

Wake Robin Inn Redevelopment

104 & 106 Sharon Road, Salisbury, Connecticut

Drainage Report

Prepared for: Aradev LLC

352 Atlantic Avenue, Unit 2 Brooklyn, NY 11217

Prepared by:

SLR International Corporation

99 Realty Drive, Cheshire, Connecticut, 06410

SLR Project No.: 141.22100.00001

July 19, 2024

Drainage Report

July 19, 2024 SLR Project No.: 141.22100.00001

Wake Robin Inn Redevelopment 104 & 106 Sharon Road Salisbury, Connecticut July 19, 2024 Revised August 1, 2024; September 13, 2024 SLR #141.22100.00001

This Drainage Report has been prepared in support of the proposed Wake Robin Inn redevelopment located on 104 & 106 Sharon Road in the town of Salisbury, Connecticut. The development proposes to redevelop the existing Wake Robin Inn site with a building addition to the existing hotel, and event barn, a gym and spa, a pool, and associated parking, drives, and walking trails.

Figure 1 - 104 & 106 Sharon Road

July 19, 2024 Wake Robin Inn Redevelopment SLR Project No.: 141.22100.00001

Table 1 - Stormwater Data

Parcel Size Total	13.79 acres
Existing Impervious Area (Watershed Area)	1.0 acres
Proposed Impervious Area (Watershed Area)	2.8 acres
Soil Type (Hydrologic Soil Group)	"B", "C", and "D"
Existing Land Use	Woods, open space, gravel, building, and driveway
Proposed Land Use	Woods, open space, gravel, building, and driveway
Design Storm for Stormwater Management	No increases in peak rates of runoff for the 2-, 10-, 25-, 50-, and 100-year storms Connecticut Department of Energy & Environmental Protection (CTDEEP) water quality volume (WQV) and water quality flow (WQF) treatment
Water Quality Measures	Catch basins with 2-foot sumps, hydrodynamic separator, retention storage for WQV
Design Storm for Storm Drainage	10-year storm
Federal Emergency Management Agency (FEMA) Special Flood Hazard Areas	Area of Minimal Flood Hazard (Zone X)
Connecticut Department of Energy & Environmental Protection Aquifer Protection Areas	Lakeville (Pettee Street) – Level A

Stormwater Management Approach

The proposed stormwater management system for the project focuses on providing water quality management while attenuating proposed peak-flows. Water quality treatment in accordance with the CTDEEP requirements for water quality volume (WQV) and water quality flow (WQF) is provided. The proposed stormwater treatment train consists of catch basins with 2-foot sumps, a hydrodynamic separator, and retention storage for the WQV.

The computer program entitled Hydraflow Storm Sewers Extension for AutoCAD® Civil 3D® 2023 by Autodesk, Inc. was used for designing the proposed storm drainage collection system. Storm drainage computations performed include pipe capacity and hydraulic grade line calculations. The contributing watershed to each individual catch basin inlet was delineated to determine the drainage area and land coverage. These values were used to determine the stormwater runoff to each inlet using the Rational Method. The rainfall intensities for the site were obtained from the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, Volume 10, Precipitation Frequency Data Server (PFDS). The proposed storm drainage system

July 19, 2024 SLR Project No.: 141.22100.00001

is designed to provide adequate capacity to convey the 10-year storm event.

Water Quality Management

Water quality measures or Best Management Practices (BMPs) have been incorporated into the design to maintain water quality to provide protection of the areas downgradient of the proposed development. The proposed stormwater management system will include catch basins with 2-foot sumps, a hydrodynamic separator, and retention storage for the WQV.

Each of the proposed stormwater basins and the underground chamber system will provide retention volume along its bottom, thus creating a water quality feature within it. This serves several purposes, including stormwater renovation and providing WQV. The CTDEEP 2024 Stormwater Quality Manual (Chapter 7) recommends methods for sizing stormwater treatment measures with WQV computations. The WQV addresses the initial stormwater runoff, also commonly referred to as the "first-flush" runoff. The WQV provides adequate volume to store the runoff associated with the first 1.3 inches of rainfall, which tends to contain the highest concentration of potential pollutants.

A hydrodynamic separator will be installed in the proposed storm drainage system prior to discharging stormwater to Detention Basin 210. This unit will further remove suspended solids before discharging downgradient, which will in turn remove other pollutants that tend to attach to the suspended solids and effectively remove other debris and floatables that may be present in stormwater runoff. The hydrodynamic separator has been designed to meet criteria recommended by the CTDEEP 2024 Stormwater Quality Manual. The device was designed based on the determined WQF, which is the peak-flow rate associated with the Water Quality Volume (WQV) and sized based on the manufacturer's specifications.

Hydrologic Analysis

A hydrologic analysis was conducted to analyze the pre-development and post-development peak-flow rates from the site. Three analysis points that receive runoff from the site were selected. Analysis Point A represents Wells Hill Road and the properties to the north of the site. Analysis Point B represents the existing storm drainage in Sharon Road adjacent to the site. Analysis Point C represents the properties southwest of the site and Sharon Road. The total watershed area delineated is approximately 25.2 acres under both existing and proposed conditions.

The method of predicting the surface water runoff rates utilized in this analysis was a computer program titled *HydroCAD 10.20-4a* by HydroCAD Software Solutions LLC. The *HydroCAD* program is a computer model that utilizes the methodologies set forth in the *Technical Release No. 55* (TR-55) manual and *Technical Release No. 20* (TR-20) computer model, originally developed by the United States Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS). The *HydroCAD* computer modeling program is primarily used for conducting hydrology studies such as this one.

The *HydroCAD* computer program forecasts the rate of surface water runoff based upon several factors. The input data includes information on land use, hydrologic soil type, vegetation, contributing watershed area, time of concentration, rainfall data, storage volumes, and the

July 19, 2024 SLR Project No.: 141.22100.00001

hydraulic capacity of structures. The computer model predicts the amount of runoff as a function of time, with the ability to include the attenuation effect due to dams, lakes, large wetlands, floodplains, and stormwater management basins. The input data for rainfalls with statistical recurrence frequencies of 1, 2, 5, 10, 25, 50, and 100 years was obtained from the NOAA Atlas 14, Volume 10 database. The corresponding rainfall totals are listed below.

Storm Frequency	Rainfall (inches)
1-year	2.41
2-year	3.08
5-year	4.19
10-year	5.11
25-year	6.37
50-year	7.28
100-year	8.32

Land use for the site under existing and proposed conditions was determined from field survey and aerial photogrammetry. Land use types used in the analysis included woods, grassed or open space, gravel, building, and impervious (paved) cover. Soil types in the watershed were determined from the CTDEEP Geographic Information System (GIS) database of the USDA-NRCS soil survey for Litchfield County, Connecticut. For the analysis, the site was determined to contain hydrologic soil types "B", "C", and "D" as classified by USDA-NRCS. Composite runoff Curve Numbers (CN) for each subwatershed were calculated based on the different land use and soil types. The time of concentration (Tc) was estimated for each subwatershed using the TR-55 methodology and was computed by summing all travel times through the watershed as sheet flow, shallow concentrated flow, and channel flow.

The existing conditions were modeled with the *HydroCAD* program to determine the peak-flow rates for the various storm events at each analysis point. A revised model was developed incorporating the proposed site conditions, stormwater detention basins, and underground chamber system. The flows obtained with the revised model were then compared to the results of the existing conditions model. Peak-flow rates from the project site were controlled by the storage volume provided within the detention basins and underground chambers and their respective outlet control structures.

The following peak rates of runoff were obtained from the *HydroCAD* hydrology results:

Analysis Point A – Wells Hill Road									
	Peak Runoff Rate (cubic feet per second)								
Storm Frequency (years)	1	2	5	10	25	50	100		
Existing Conditions	4.2	8.1	15.5	22.3	32.2	39.6	48.1		
Proposed Conditions	3.8	7.3	14.6	21.3	30.5	37.5	45.5		

- 4 -

July 19, 2024 bin Inn Redevelopment SLR Project No.: 141.22100.00001

Underground Chamber System 120*									
	Water Surface Elevation (feet)								
Storm Frequency (years)	1	2	5	10	25	50	100		
Proposed Conditions	819.8	820.2	821.2	821.6	821.8	821.9	822.1		

*Inside Top of Chamber Elevation = 822.3

Plunge Pool 120**									
	Water Surface Elevation (feet)								
Storm Frequency (years)	1	2	5	10	25	50	100		
Proposed Conditions	815.0	815.0	815.0	815.1	815.2	815.2	815.2		

**Top of Berm Elevation = 816.0

Analysis Point B – Sharon Road Storm Drainage									
	Peak Runoff Rate (cubic feet per second)								
Storm Frequency (years)	1	2	5	10	25	50	100		
Existing Conditions	3.9	6.1	10.1	13.5	18.2	21.6	25.5		
Proposed Conditions	2.5	3.9	6.8	11.8	15.9	19.3	22.6		

Detention Basin 210***									
	Water Surface Elevation (feet)								
Storm Frequency (years)	1	2	5	10	25	50	100		
Proposed Conditions	815.2	815.4	815.7	816.0	816.4	816.7	816.9		

^{***}Top of Berm Elevation = 818.0

Detention Basin 220****									
	Water Surface Elevation (feet)								
Storm Frequency (years)	1	2	5	10	25	50	100		
Proposed Conditions	801.6	802.2	802.6	802.8	802.8	802.9	803.0		

****Top of Berm Elevation = 804.0

cparca for.	
radev LLC	July 19, 2024
ake Robin Inn Redevelopment	SLR Project No.: 141.22100.00001

Analysis Point C – Sharon Road and Southern Properties									
	Peak Runoff Rate (cubic feet per second)								
Storm Frequency (years)	1	2	5	10	25	50	100		
Existing Conditions	0.9	1.6	2.9	4.0	5.6	6.8	8.1		
Proposed Conditions	0.9	1.5	2.5	3.4	4.7	5.7	6.7		

Conclusion

The results of the hydrologic analysis demonstrate that there will be no increases in peak-flow rates from the proposed redevelopment. This was achieved for the storm events modeled through a planned stormwater management system with detention provided in the stormwater detention basins and underground storage chambers. The proposed development will also introduce a new stormwater treatment train consisting of catch basins with 2-foot sumps, a hydrodynamic separator, and retention storage for the WQV.

All supporting documentation and stormwater-related computations are attached to this report along with the *HydroCAD* model results for stormwater management and *Hydraflow Storm* Sewers model results for the proposed storm drainage system. Illustrative Watershed Maps for both existing and proposed conditions are also attached to this report.

Appendices

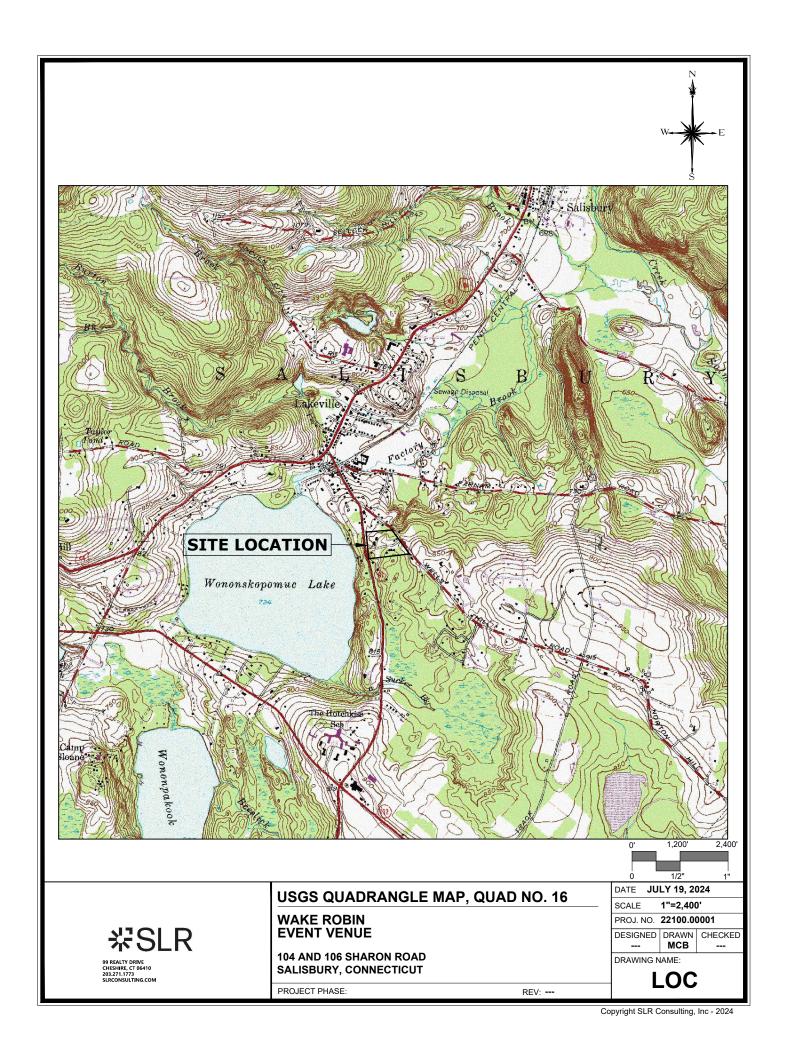
Appendix A	United States Geological Survey Location Map
Appendix B	Federal Emergency Management Agency Flood Insurance Rate Map
Appendix C	Natural Resources Conservation Service Hydrologic Soil Group Map
Appendix D	Storm Drainage Computations
Appendix E	Water Quality Computations
Appendix F	Hydrologic Analysis – Input Computations
Appendix G	Hydrologic Analysis – Computer Model Results
Appendix H	Watershed Maps

- 6 -

Appendix A United States Geological Survey Location Map

Wake Robin Inn Redevelopment

104 & 106 Sharon Road, Salisbury, Connecticut


Drainage Report


Prepared for: Aradev LLC 352 Atlantic Avenue, Unit 2 Brooklyn, NY 11217

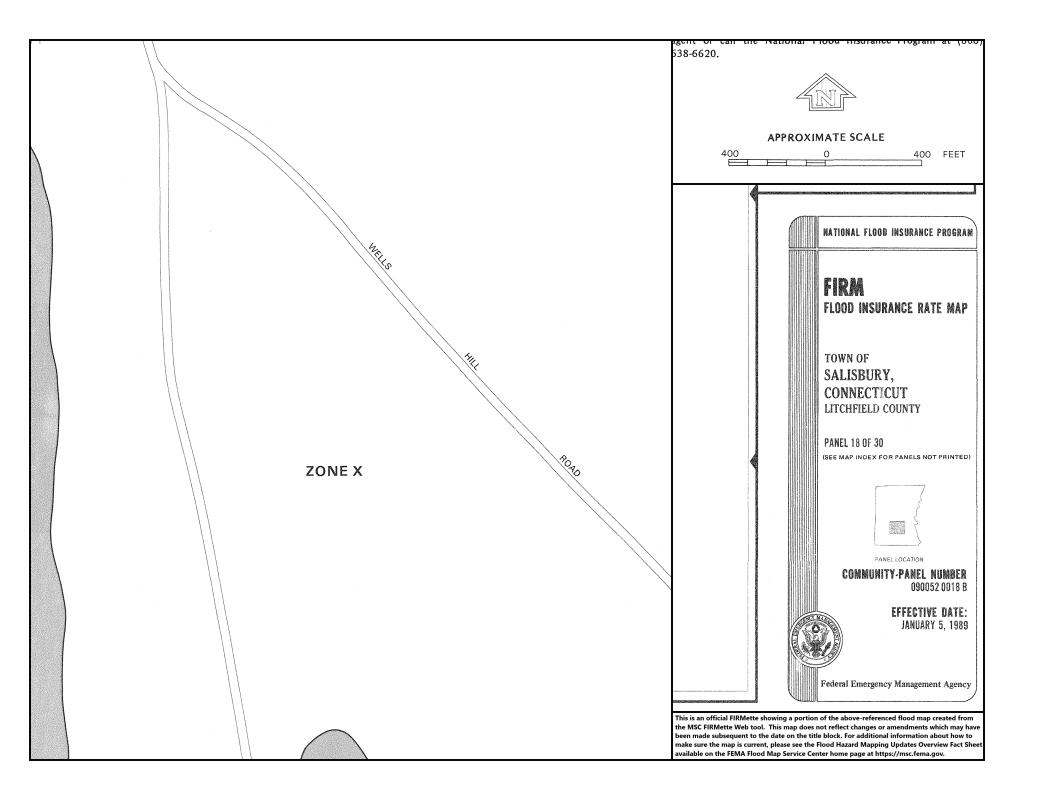
SLR Project No.: 141.22100.00001

July 19, 2024

Appendix B FEMA Flood Insurance Rate Map

Wake Robin Inn Redevelopment

104 & 106 Sharon Road, Salisbury, Connecticut


Drainage Report


Prepared for: Aradev LLC 352 Atlantic Avenue, Unit 2 Brooklyn, NY 11217

SLR Project No.: 141.22100.00001

July 19, 2024

Appendix C Natural Resources Conservation Service Hydrologic Soil Group Map

Wake Robin Inn Redevelopment

104 & 106 Sharon Road, Salisbury, Connecticut

Drainage Report

Prepared for: Aradev LLC 352 Atlantic Avenue, Unit 2 Brooklyn, NY 11217

SLR Project No.: 141.22100.00001

July 19, 2024

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:12.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: State of Connecticut, Western Part Survey Area Data: Version 1, Sep 15, 2023 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Oct 21, 2022—Oct 27. 2022 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Mudgepond and Alden soils, extremely stony	C/D	1.5	2.3%
17	Timakwa and Natchaug soils, 0 to 2 percent slopes	B/D	0.1	0.1%
48B	Georgia and Amenia silt loams, 2 to 8 percent slopes	C/D	2.1	3.2%
49C	Georgia and Amenia silt loams, 8 to 15 percent slopes, very stony	C/D	0.2	0.3%
80B	Bernardston silt loam, 3 to 8 percent slopes	С	1.6	2.4%
80C	Bernardston silt loam, 8 to 15 percent slopes	С	0.1	0.2%
90B	Stockbridge loam, 3 to 8 percent slopes	В	7.4	11.3%
90C	Stockbridge loam, 8 to 15 percent slopes	В	6.2	9.4%
94C	Farmington-Nellis complex, 3 to 15 percent slopes, very rocky	D	41.0	62.3%
94E	Farmington-Nellis complex, 15 to 35 percent slopes, very rocky	D	1.7	2.6%
95E	Farmington-Rock outcrop complex, 15 to 45 percent slopes	D	3.9	6.0%
Totals for Area of Inter	rest		65.9	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Appendix D Storm Drainage Computations

Wake Robin Inn Redevelopment

104 & 106 Sharon Road, Salisbury, Connecticut

Drainage Report

Prepared for: Aradev LLC 352 Atlantic Avenue, Unit 2 Brooklyn, NY 11217

SLR Project No.: 141.22100.00001

July 19, 2024

Rational Method Individual Basin Calculations

Project:Wake Robin InnBy:MCBDate:Rev. 9/5/24Location:Salisbury, CTChecked:TDRDate:9/5/24

Basin Name	Impervious Area C=0.9 (sf)	Grassed Area C=0.3 (sf)	Wooded Area C=0.2 (sf)	Total Area (sf)	Total Area (ac)	Weighted C	Tc (min)
			System 120				
CLCB 2	11925	911	0	12836	0.29	0.86	5.0
CLCB 4	1945	518	0	2463	0.06	0.77	5.0
CLCB 5	6103	3999	0	10102	0.23	0.66	5.0
			System 200				
YD 6	1144	1817	22172	25133	0.58	0.24	5.0
YD 7	0	1194	0	1194	0.03	0.30	5.0
YD 9	2457	3620	647	6724	0.15	0.51	5.0
CLCB 10	11883	21081	0	32964	0.76	0.52	5.0
CLCB 28	4100	1628	8502	14230	0.33	0.41	5.0
YD 29	0	5701	2907	8608	0.20	0.27	5.0
YD 30	1207	8699	0	9906	0.23	0.37	5.0
YD 31	1965	542	0	2507	0.06	0.77	5.0
CULVERT 2	7077	6589	16595	30261	0.69	0.39	5.0
			System 210				
YD 14	454	957	0	1411	0.03	0.49	5.0
CLCB 15	12861	8125	1149	22135	0.51	0.64	5.0
CLCB 16	3365	4367	0	7732	0.18	0.56	5.0
YD 17	2516	7615	0	10131	0.23	0.45	5.0
YD 18	338	0	0	338	0.01	0.90	5.0
YD 19	346	0	0	346	0.01	0.90	5.0
YD 20	331	0	0	331	0.01	0.90	5.0
			System 220				
YD 24	2112	4834	0	6946	0.16	0.48	5.0
YD 25	4236	4091	0	8327	0.19	0.61	5.0
YD 26	213	887	0	1100	0.03	0.42	5.0

Rational Method Roof Drain System Calculations

Project:Wake Robin InnBy:MCBDate:Rev. 9/5/24Location:Salisbury, CTChecked:TDRDate:9/5/24

Total Roof Runoff to Proposed Storm Drainage System (In Hydraflow Model)

	ROOF TO CLCB	ROOF TO CLCB 5	ROOF TO YD 14	ROOF TO CLCB 16	CULVERT 2	
С	0.90	0.90	0.90	0.90	0.39	
I	6.98	6.98	6.98	6.98	10.50	
Α	0.05	0.05	0.10	0.26	0.69	
Q	0.31	0.31	0.63	1.63	2.83	

NOAA Atlas 14, Volume 10, Version 3 Location name: Lakeville, Connecticut, USA* Latitude: 41.958°, Longitude: -73.4354° Elevation: 831 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

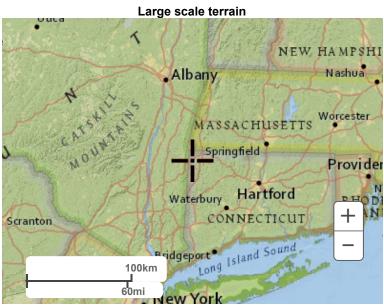
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

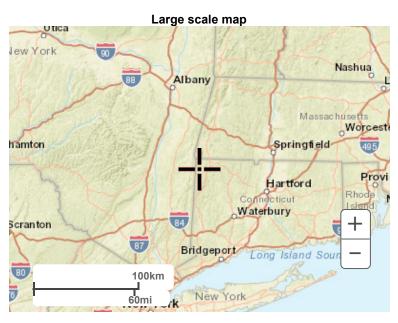
NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

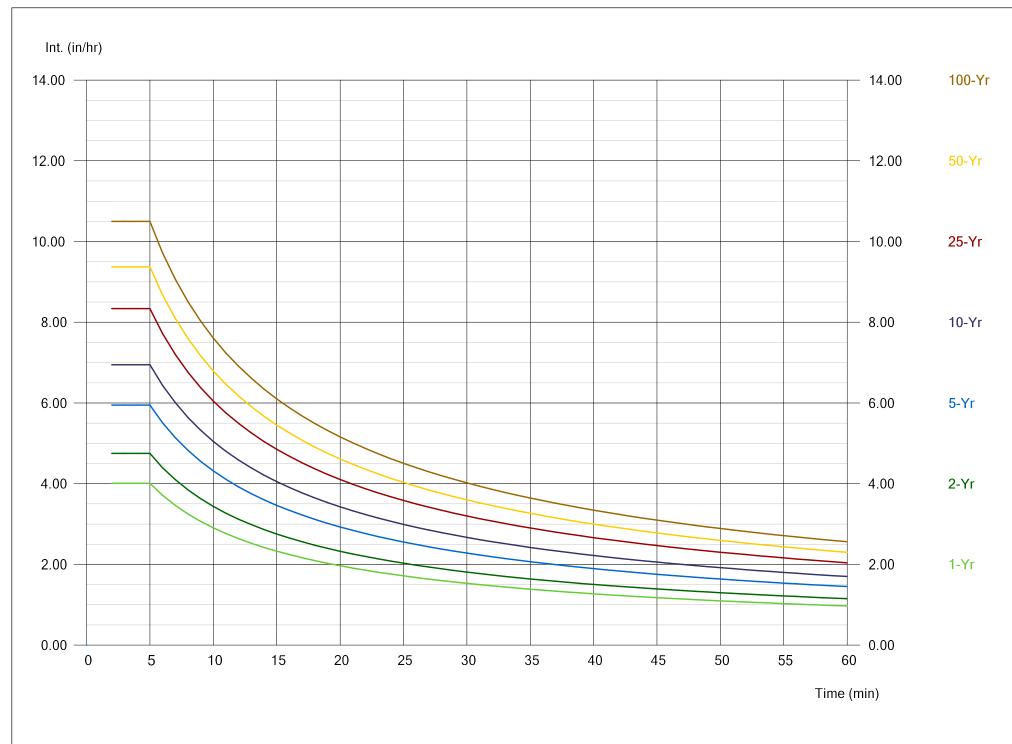
PF tabular

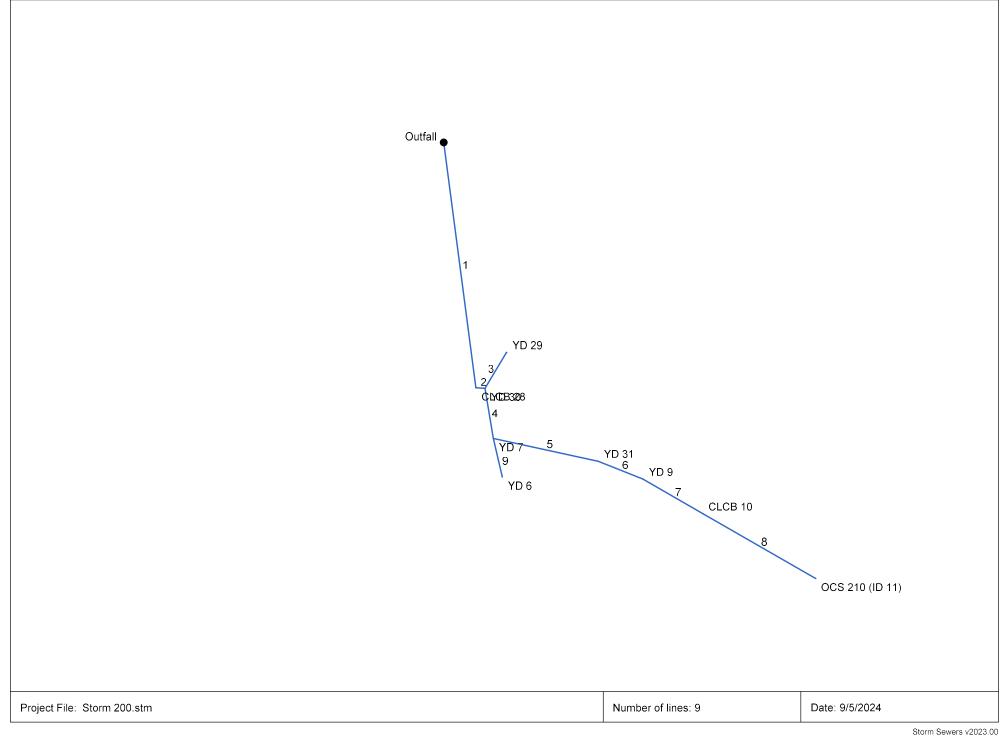
D				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.01 (3.06-5.24)	4.75 (3.64-6.22)	5.96 (4.55-7.84)	6.97 (5.29-9.22)	8.36 (6.16-11.5)	9.42 (6.80-13.2)	10.5 (7.37-15.3)	11.7 (7.82-17.4)	13.3 (8.60-20.6)	14.6 (9.23-23.0)
10-min	2.84 (2.17-3.71)	3.37 (2.57-4.40)	4.23 (3.23-5.56)	4.94 (3.74-6.53)	5.93 (4.36-8.15)	6.67 (4.81-9.38)	7.44 (5.22-10.8)	8.27 (5.54-12.4)	9.41 (6.09-14.6)	10.3 (6.53-16.3)
15-min	2.22 (1.70-2.91)	2.64 (2.02-3.46)	3.32 (2.52-4.36)	3.88 (2.94-5.12)	4.65 (3.42-6.40)	5.23 (3.77-7.35)	5.84 (4.09-8.48)	6.48 (4.35-9.69)	7.38 (4.78-11.4)	8.10 (5.12-12.8)
30-min	1.53 (1.17-2.00)	1.81 (1.39-2.37)	2.28 (1.74-3.00)	2.67 (2.02-3.53)	3.20 (2.36-4.41)	3.61 (2.60-5.07)	4.03 (2.83-5.87)	4.49 (3.01-6.71)	5.15 (3.33-7.96)	5.68 (3.59-8.97)
60-min	0.971 (0.743-1.27)	1.15 (0.882-1.51)	1.45 (1.11-1.91)	1.70 (1.29-2.25)	2.04 (1.50-2.82)	2.30 (1.66-3.24)	2.57 (1.81-3.75)	2.87 (1.92-4.29)	3.30 (2.13-5.11)	3.65 (2.31-5.77)
2-hr	0.638 (0.490-0.831)	0.740 (0.568-0.965)	0.907 (0.694-1.19)	1.05 (0.796-1.38)	1.24 (0.913-1.69)	1.38 (1.00-1.93)	1.53 (1.08-2.21)	1.69 (1.14-2.52)	1.91 (1.24-2.95)	2.09 (1.32-3.29)
3-hr	0.488 (0.376-0.634)	0.566 (0.435-0.735)	0.692 (0.531-0.902)	0.797 (0.608-1.04)	0.941 (0.697-1.29)	1.05 (0.763-1.46)	1.16 (0.821-1.68)	1.29 (0.867-1.91)	1.46 (0.948-2.24)	1.60 (1.02-2.51)
6-hr	0.299 (0.231-0.387)	0.354 (0.274-0.458)	0.444 (0.342-0.577)	0.519 (0.398-0.678)	0.622 (0.464-0.851)	0.698 (0.512-0.979)	0.781 (0.559-1.14)	0.879 (0.594-1.30)	1.03 (0.669-1.58)	1.15 (0.734-1.80
12-hr	0.174 (0.135-0.224)	0.216 (0.167-0.278)	0.284 (0.220-0.367)	0.340 (0.262-0.442)	0.418 (0.315-0.575)	0.475 (0.352-0.670)	0.538 (0.392-0.797)	0.620 (0.419-0.919)	0.753 (0.491-1.16)	0.870 (0.557-1.36
24-hr	0.100 (0.078-0.128)	0.128 (0.100-0.164)	0.174 (0.135-0.224)	0.212 (0.164-0.275)	0.265 (0.201-0.364)	0.303 (0.227-0.429)	0.346 (0.255-0.516)	0.404 (0.274-0.597)	0.501 (0.328-0.766)	0.587 (0.377-0.916
2-day	0.057 (0.044-0.072)	0.073 (0.057-0.093)	0.100 (0.078-0.128)	0.123 (0.095-0.158)	0.153 (0.117-0.210)	0.176 (0.132-0.248)	0.201 (0.149-0.299)	0.235 (0.160-0.346)	0.292 (0.191-0.445)	0.343 (0.221-0.533
3-day	0.041 (0.032-0.052)	0.053 (0.042-0.067)	0.072 (0.057-0.092)	0.088 (0.069-0.113)	0.110 (0.084-0.151)	0.126 (0.095-0.178)	0.144 (0.107-0.214)	0.169 (0.115-0.248)	0.210 (0.138-0.319)	0.246 (0.159-0.382
4-day	0.033 (0.026-0.042)	0.042 (0.033-0.054)	0.058 (0.045-0.074)	0.070 (0.055-0.090)	0.088 (0.067-0.120)	0.100 (0.076-0.141)	0.115 (0.085-0.170)	0.134 (0.091-0.197)	0.166 (0.109-0.252)	0.195 (0.126-0.302
7-day	0.022 (0.018-0.028)	0.028 (0.022-0.036)	0.038 (0.030-0.048)	0.046 (0.036-0.059)	0.057 (0.044-0.078)	0.065 (0.049-0.091)	0.074 (0.055-0.109)	0.086 (0.059-0.126)	0.106 (0.070-0.161)	0.123 (0.080-0.191
10-day	0.018 (0.014-0.023)	0.023 (0.018-0.029)	0.030 (0.023-0.038)	0.036 (0.028-0.045)	0.044 (0.033-0.059)	0.050 (0.037-0.069)	0.056 (0.042-0.082)	0.065 (0.044-0.095)	0.079 (0.052-0.120)	0.091 (0.059-0.141
20-day	0.013 (0.010-0.016)	0.015 (0.012-0.019)	0.019 (0.015-0.024)	0.022 (0.017-0.028)	0.026 (0.020-0.035)	0.030 (0.022-0.041)	0.033 (0.024-0.047)	0.037 (0.026-0.054)	0.044 (0.029-0.066)	0.049 (0.032-0.076
30-day	0.011 (0.009-0.014)	0.012 (0.010-0.016)	0.015 (0.012-0.019)	0.017 (0.013-0.022)	0.020 (0.015-0.027)	0.022 (0.017-0.030)	0.024 (0.018-0.035)	0.027 (0.019-0.039)	0.031 (0.021-0.047)	0.034 (0.022-0.053
45-day	0.009 (0.007-0.011)	0.010 (0.008-0.013)	0.012 (0.009-0.015)	0.013 (0.011-0.017)	0.015 (0.012-0.020)	0.017 (0.013-0.023)	0.019 (0.013-0.026)	0.020 (0.014-0.029)	0.022 (0.015-0.034)	0.024 (0.016-0.037
60-day	0.008	0.009	0.010	0.011	0.013 (0.010-0.017)	0.014	0.015	0.016	0.018	0.019


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.


Back to Top



Large scale aerial

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Inventory Report

Line ID
let/ m El)
31.00 EXCB - CLCB 28
33.00 CLCB 28 - YD 30
32.70 YD 30 - YD 29
34.60 YD 30 - YD 7
95.80 YD 7 - YD 31
00.70 YD 31 - YD 9
09.70 YD 9 - CLCB 10
17.00 CLCB 10 - OCS 210
35.50 YD 7 - YD 6

Storm Sewer Tabulation

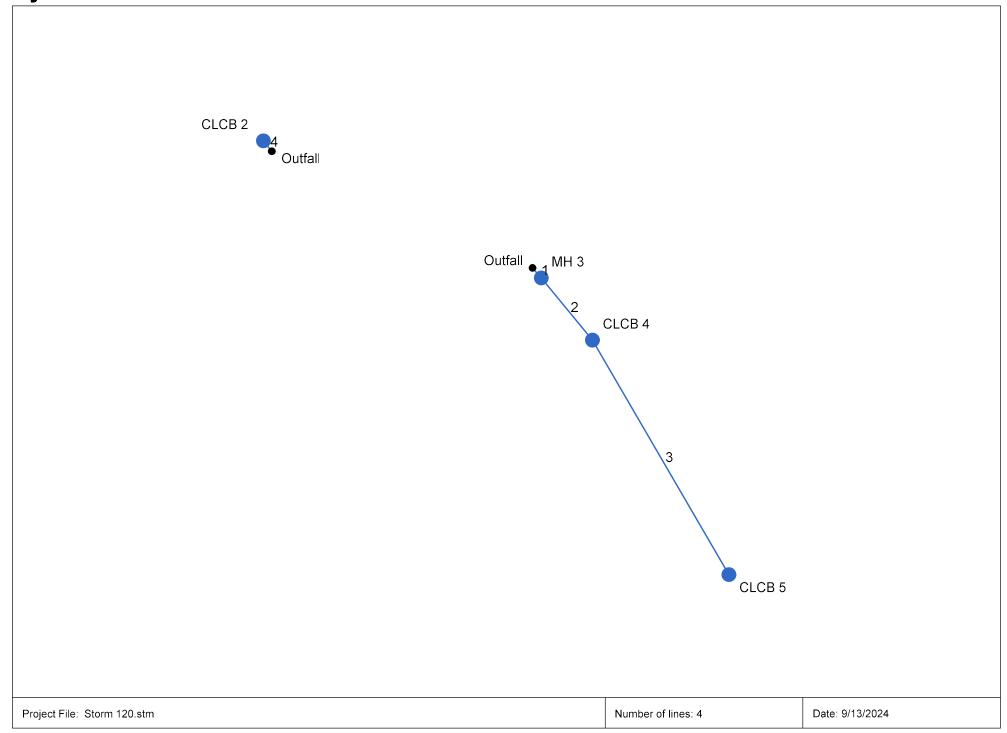
Project File: Storm 200.stm

Statio	n	Len	Drng A	rea	Rnoff	Area x	С	Тс		Rain			Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
Line			Incr	Total	coeff	Incr	Total	Inlet	Syst	(I)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	244.0		2.34	0.41	0.14	0.94	5.0	5.5	10.1	11.68	12.40	6.99	18	1.19	774.10	777.00	775.50	778.30	777.70	781.00	EXCB - CLCB 28
2	1	9.0	0.23	2.01	0.37	0.09	0.81	5.0	5.5	10.1	10.33	19.51	12.34	15	7.78	778.00	778.70	778.65	779.89	781.00	783.00	CLCB 28 - YD 30
3	2	41.0	0.20	0.20	0.27	0.05	0.05	5.0	5.0	10.5	0.57	9.14	1.53	15	1.71	778.70	779.40	779.89	779.69	783.00	782.70	YD 30 - YD 29
4	2	50.0	0.03	1.58	0.30	0.01	0.67	5.0	5.4	10.2	8.98	15.00	7.52	15	4.60	778.70	781.00	779.89	782.15	783.00	784.60	YD 30 - YD 7
5	4	105.0	0.06	0.97	0.77	0.05	0.52	5.0	5.2	10.3	7.55	11.30	9.63	12	8.57	781.00	790.00	782.15	790.98	784.60	795.80	YD 7 - YD 31
6	5	47.0	0.15	0.91	0.51	0.08	0.47	5.0	5.1	10.4	7.10	12.20	12.60	12	10.00	792.00	796.70	792.55	797.68	795.80	800.70	YD 31 - YD 9
7	6	68.0	0.76	0.76	0.52	0.40	0.40	5.0	5.0	10.5	6.35	15.52	8.13	12	16.18	790.30	801.30	797.68	802.26	800.70	809.70	YD 9 - CLCB 10
8	7	127.0	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	2.20	10.04	7.22	12	6.77	806.70	815.30	807.02	815.93	809.70	817.00	CLCB 10 - OCS 2
9	4	39.0	0.58	0.58	0.24	0.14	0.14	5.0	5.0	10.5	1.46	8.74	2.74	12	5.13	781.00	783.00	782.15	783.51	784.60	785.50	YD 7 - YD 6

Number of lines: 9

NOTES:Intensity = 48.64 / (Inlet time + 3.70) ^ 0.71; Return period =Yrs. 100; c = cir e = ellip b = box

Run Date: 9/5/2024


Hydraulic Grade Line Computations

Line	Size	Q			D	ownstre	am				Len				Upstr	eam				Chec	k	JL	Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	VeI head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	coeff (K)	loss (ft)
	()		(,	()		(- 4)	(,	(,					()	()	(- 4)		(,	()	(,,,	(,,,	(,	-	
1	18	11.68	774.10	775.50	1.40	1.63	6.81	0.80	776.30	0.000	244.0	777.00	778.30 j	1.30**	1.63	7.18	0.80	779.10	0.000	0.000	n/a	0.98	0.79
2	15	10.33	778.00	778.65	0.65*	0.64	16.12	1.14	779.79	0.000	9.0	778.70	779.89	1.19**	1.21	8.56	1.14	781.03	0.000	0.000	n/a	1.47	n/a
3	15	0.57	778.70	779.89	1.19	0.22	0.47	0.10	779.99	0.000	41.0	779.40	779.69	0.29**	0.22	2.58	0.10	779.80	0.000	0.000	n/a	1.00	0.10
4	15	8.98	778.70	779.89	1.19	1.18	7.45	0.89	780.79	0.000	50.0	781.00	782.15 j	1.15**	1.18	7.59	0.89	783.05	0.000	0.000	n/a	1.41	n/a
5	12	7.55	781.00	782.15	1.00	0.78	9.61	1.44	783.59	3.830	105.0	790.00	790.98 j	0.98**	0.78	9.65	1.45	792.43	3.439	3.635	n/a	0.50	0.72
6	12	7.10	792.00	792.55	0.55*	0.44	16.11	1.28	793.83	0.000	47.0	796.70	797.68	0.98**	0.78	9.09	1.28	798.96	0.000	0.000	n/a	0.50	n/a
7	12	6.35	790.30	797.68	1.00	0.78	8.08	1.02	798.69	2.709	68.0	801.30	802.26 j	0.96**	0.78	8.18	1.04	803.30	2.366	2.538	n/a	0.50	0.52
8	12	2.20	806.70	807.02	0.32*	0.21	10.24	0.27	807.29	0.000	127.0	815.30	815.93	0.63**	0.52	4.19	0.27	816.21	0.000	0.000	n/a	1.00	n/a
9	12	1.46	781.00	782.15	1.00	0.40	1.86	0.05	782.21	0.144	39.0	783.00	783.51 j	0.51**	0.40	3.61	0.20	783.71	0.531	0.337	n/a	1.00	0.20

Project File: Storm 200.stm Run Date: 9/5/2024

Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Inventory Report

Line		Align	ment			Flow	/ Data					Physica	ıl Data				Line ID
No.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	4.0	48.6	МН	0.00	0.00	0.00	5.0	821.00	7.50	821.30	12	Cir	0.012	0.15	828.30	Outfall-MH 3
2	1	24.0	2.0	Grate	0.31	0.06	0.77	5.0	825.00	2.92	825.70	12	Cir	0.012	0.50	829.40	MH 3-CLCB 4
3	2	81.0	9.2	Grate	0.31	0.23	0.66	5.0	825.70	3.21	828.30	12	Cir	0.012	1.00	832.00	CLCB 4-CLCB 5
4	End	4.0	-128.7	Grate	0.00	0.29	0.86	5.0	820.80	2.50	820.90	12	Cir	0.012	1.00	823.80	Outfall-CLCB 2
		m 120.stm											of lines: 4				/13/2024

Storm Sewer Tabulation

Statio	n	Len	Drng A	\rea	Rnoff	Area x	С	Тс			Total	Сар	Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / R	m Elev	Line ID
Line	То	-	Incr	Total	coeff	Incr	Total	Inlet	Syst	-(I) -	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
4	F	4.0	0.00	0.00	0.00	0.00	0.00	5.0		6.7	4.04	40.57	7.40	40	7.50	004.00	004.00	004.00	024.00	0.00	000 00	Outfall MILL 2
1	End	4.0	0.00	0.29	0.00	0.00	0.20	5.0	5.5	6.7	1.94	10.57	7.12	12	7.50	821.00	821.30	821.29	821.89	0.00	828.30	Outfall-MH 3
2	1	24.0	0.06	0.29	0.77	0.05	0.20	5.0	5.4	6.7	1.95	6.59	5.65	12	2.92	825.00	825.70	825.37	826.30	828.30	829.40	MH 3-CLCB 4
3	2	81.0	0.23	0.23	0.66	0.15	0.15	5.0	5.0	6.9	1.36	6.91	3.17	12	3.21	825.70	828.30	826.30	828.79	829.40	832.00	CLCB 4-CLCB 5
4	End	4.0	0.29	0.29	0.86	0.25	0.25	5.0	5.0	6.9	1.73	6.10	5.26	12	2.50	820.80	820.90	821.16	821.46	0.00	823.80	Outfall-CLCB 2

Number of lines: 4

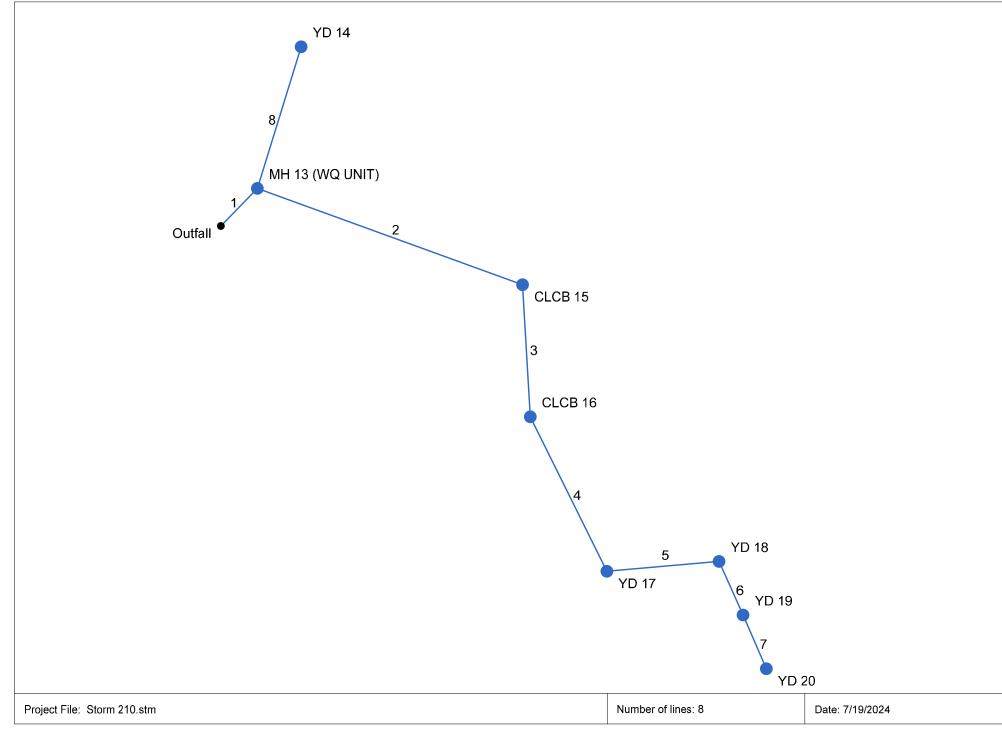
NOTES:Intensity = 32.58 / (Inlet time + 3.80) ^ 0.71; Return period =Yrs. 10; c = cir e = ellip b = box

Project File: Storm 120.stm

Run Date: 9/13/2024

Hydraulic Grade Line Computations

.ine	Size	Q			D	ownstre	am				Len				Upsti	ream				Chec	k	JL	Minor
	(in)	(ofo)	Invert elev	HGL elev	Depth		Vel	Vel head	EGL elev	Sf	(54)	Invert elev	HGL elev	Depth		Vel	Vel head	elev	Sf	Sf	Enrgy	coeff	loss
	(in)	(cfs)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(%)	(ft)	(K)	(ft)
1	12	1.94	821.00	821.29	0.29	0 19	10.25	0.25	821.54	0.000	4.0	821.30	821.89	0.59**	0.49	4.00	0.25	822.14	0.000	0.000	n/a	0.15	n/a
2	12	1.95	825.00	825.37	0.37*		7.30	0.25	825.62	0.000		825.70		0.60**		4.00	0.25	826.54			n/a	0.50	0.12
3	12	1.36	825.70	826.30		0.39	2.80	0.19	826.49		81.0	828.30	828.79 j			3.53	0.19	828.99	0.000		n/a	1.00	0.19
4	12	1.73	820.80	821.16	0.36*		6.69	0.23	821.39	0.000		820.90	821.46			3.83	0.23	821.69		0.000		1.00	0.23
•	12	1.75	020.00	021.10	0.00	0.20	0.00	0.23	021.00	0.000	7.0	020.50	021.40	0.50	0.43	0.00	0.23	021.03	0.000	0.000	"""	1.00	0.23


Project File: Storm 120.stm

Number of lines: 4

Run Date: 9/13/2024

Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Inventory Report

ine		Alignr	nent			Flow	/ Data					Physica	l Data				Line ID
ο.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	21.000	-51.914	мн	0.00	0.00	0.00	5.0	815.00	3.81	815.80	12	Cir	0.012	0.98	819.00	FES 12-MH 13 (WQ U
2	1	103.000	76.135	Grate	0.00	0.51	0.64	5.0	815.80	8.25	824.30	12	Cir	0.012	1.37	829.00	MH 13 (WQ UNIT)-CL
3	2	58.000	63.052	Grate	1.65	0.18	0.56	5.0	826.00	2.93	827.70	12	Cir	0.012	0.57	830.70	CLCB 15-CLCB 16
4	3	73.000	-19.070	DrGrt	0.00	0.23	0.45	5.0	827.70	4.11	830.70	12	Cir	0.012	1.46	833.70	CLCB 16-YD 17
5	4	40.000	-74.461	DrGrt	0.00	0.01	0.90	5.0	830.70	10.75	835.00	8	Cir	0.012	1.47	842.00	YD 17-YD 18
3	5	25.000	76.411	DrGrt	0.00	0.01	0.90	5.0	838.00	2.00	838.50	8	Cir	0.012	0.50	842.00	YD 18-YD 19
7	6	25.000	0.535	DrGrt	0.00	0.01	0.90	5.0	838.50	2.00	839.00	8	Cir	0.012	1.00	842.00	YD 19-YD 20
3	1	64.000	-24.076	DrGrt	0.63	0.03	0.49	5.0	815.50	2.34	817.00	12	Cir	0.012	1.00	821.20	MH 13 (WQ UNIT)-YD

Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x	С	Тс		Rain	Total	Сар	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
Line	То	-	Incr	Total	coeff	Incr	Total	Inlet	Syst	(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	21.000	0.00	0.98	0.00	0.00	0.57	5.0	6.9	6.0	5.74	7.53	7.46	12	3.81	815.00	815.80	815.95	816.75	817.36	819.00	FES 12-MH 13 (W
2	1	103.000	0.51	0.95	0.64	0.33	0.56	5.0	6.6	6.2	5.08	11.08	6.66	12	8.25	815.80	824.30	816.75	825.22	819.00	829.00	MH 13 (WQ UNIT)
3	2	58.000	0.18	0.44	0.56	0.10	0.23	5.0	6.5	6.2	3.09	6.61	6.57	12	2.93	826.00	827.70	826.48	828.45	829.00	830.70	CLCB 15-CLCB 1
4	3	73.000	0.23	0.26	0.45	0.10	0.13	5.0	5.9	6.5	0.84	7.82	2.18	12	4.11	827.70	830.70	828.45	831.08	830.70	833.70	CLCB 16-YD 17
5	4	40.000	0.01	0.03	0.90	0.01	0.03	5.0	5.5	6.7	0.18	4.29	1.50	8	10.75	830.70	835.00	831.08	835.19	833.70	842.00	YD 17-YD 18
6	5	25.000	0.01	0.02	0.90	0.01	0.02	5.0	5.3	6.8	0.12	1.85	2.45	8	2.00	838.00	838.50	838.12	838.66	842.00	842.00	YD 18-YD 19
7	6	25.000	0.01	0.01	0.90	0.01	0.01	5.0	5.0	6.9	0.06	1.85	1.28	8	2.00	838.50	839.00	838.66	839.11	842.00	842.00	YD 19-YD 20
8	1	64.000	0.03	0.03	0.49	0.01	0.01	5.0	5.0	6.9	0.73	5.91	1.92	12	2.34	815.50	817.00	816.75	817.36	819.00	821.20	MH 13 (WQ UNIT)
Proje	ct File:	Storm 2	¹——210.stm	1	1	1		1	1		1		-			Number	of lines: 8	3		Run Da	te: 7/19/20)24

NOTES:Intensity = 32.58 / (Inlet time + 3.80) ^ 0.71; Return period =Yrs. 10; c = cir e = ellip b = box

Inlet Report

Line No	Inlet ID	Q = CIA	Q carry	Q capt	Q	Junc	Curb I	nlet	Gra	te Inlet				G	utter					Inlet		Byp Line
NO		(cfs)	(cfs)	(cfs)	Byp (cfs)	Type	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	
1	MH 13 (WQ UNIT)	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
2	CLCB 15	2.27	0.67	2.94	0.00	Grate	0.0	0.00	3.12	2.31	1.35	Sag	2.53	0.012	0.012	0.000	0.34	28.74	0.34	28.74	0.0	Off
3	CLCB 16	2.35*	0.00	1.68	0.67	Grate	0.0	0.00	0.00	2.31	1.35	0.037	2.53	0.071	0.071	0.013	0.23	3.26	0.14	2.04	0.0	2
4	YD 17	0.72	0.00	0.72	0.00	DrGrt	0.0	0.00	1.51	1.23	1.23	Sag	2.00	0.091	0.091	0.000	0.13	4.93	0.13	4.93	0.0	Off
5	YD 18	0.06	0.00	0.06	0.00	DrGrt	0.0	0.00	1.51	1.23	1.23	Sag	2.00	0.010	0.010	0.000	0.03	7.23	0.03	7.23	0.0	Off
6	YD 19	0.06	0.00	0.06	0.00	DrGrt	0.0	0.00	1.51	1.23	1.23	Sag	2.00	0.010	0.010	0.000	0.03	7.23	0.03	7.23	0.0	Off
7	YD 20	0.06	0.00	0.06	0.00	DrGrt	0.0	0.00	1.51	1.23	1.23	Sag	2.00	0.010	0.010	0.000	0.03	7.23	0.03	7.23	0.0	Off
8	YD 14	0.73*	0.00	0.27	0.46	DrGrt	0.0	0.00	0.00	1.23	1.23	0.010	2.00	0.070	0.070	0.013	0.11	5.17	0.11	5.17	0.0	Off

Project File: Storm 210.stm Number of lines: 8 Run Date: 7/19/2024

NOTES: Inlet N-Values = 0.016; Intensity = 32.58 / (Inlet time + 3.80) ^ 0.71; Return period = 10 Yrs.; * Indicates Known Q added. All curb inlets are throat.


Hydraulic Grade Line Computations

Line		Q (cfs)	Downstream								Len	Upstream								Chec	k	JL	Minor
			Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth (ft)		Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Sf	Enrgy loss (ft)	coeff (K)	f loss (ft)
1	12	5.74	815.00	815.95	0.95	0.77	7.46	0.87	816.81	0.000		815.80		0.95**	0.77	7.46	0.87	817.61	0.000	0.000	n/a	0.98	0.85
2	12	5.08	815.80	816.75	0.95	0.76	6.60	0.70	817.45	0.000		0824.30	825.22 j			6.72	0.70	825.92	0.000	0.000	n/a	1.37	n/a
3	12	3.09	826.00	826.48	0.48*	0.37	8.26	0.37	826.85	0.000		827.70	828.45			4.87	0.37	828.82	0.000	0.000	n/a	0.57	n/a
4	12	0.84	827.70	828.45	0.75	0.28	1.33	0.14	828.60	0.000		830.70	831.08 j			3.04	0.14	831.23	0.000	0.000	n/a	1.46	n/a
5	8	0.18	830.70	831.08	0.38	0.08	0.87	0.07	831.15	0.000		835.00	835.19 j			2.13	0.07	835.27	0.000	0.000	n/a	1.47	0.10
6	8	0.12	838.00	838.12	0.12*	0.04	3.00	0.06	838.17	0.000		838.50		0.16**		1.91	0.06	838.72	0.000	0.000	n/a	0.50	0.03
7	8	0.06	838.50	838.66	0.16	0.04	0.98	0.04	838.70	0.000		839.00	839.11 j			1.59	0.04	839.15	0.000	0.000	n/a	1.00	0.04
8	12	0.73	815.50	816.75	1.00	0.25	0.93	0.01	816.76	0.036	64.000	817.00	817.36 j	0.36**	0.25	2.91	0.13	817.49	0.484	0.260	n/a	1.00	n/a

Project File: Storm 210.stm Number of lines: 8 Run Date: 7/19/2024

Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Inventory Report

Line	Line Alignment					Flow	Data Data					Line ID					
NO.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	99.139	-10.814	DrGrt	0.00	0.16	0.48	5.0	803.00	3.53	806.50	8	Cir	0.012	0.50	809.50	FES 23-YD 24
2	1	43.708	2.327	DrGrt	0.00	0.19	0.61	5.0	806.50	5.72	809.00	8	Cir	0.012	1.50	811.90	YD 24-YD 25
3	2	46.213	89.858	DrGrt	0.00	0.03	0.42	5.0	809.00	6.49	812.00	8	Cir	0.012	1.00	815.00	YD 25-YD 26
ornier	t File: Sto	rm 220.stm	1	ı	-	1	1	1	1	1	1	Number	r of lines: 3	-	ı	Date: 7	/19/2024

Storm Sewer Tabulation

statio	n	Len				Invert E	ev	HGL Ele	ev.	Grnd / R	Line ID											
ine	То	-	Incr	Total	соеп	Incr	Total	Inlet	Syst	(I)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
	End	99.139	0.16	0.38	0.48	0.08	0.21	5.0	6.0	6.5	1.32	2.46	5.76	8	3.53	803.00	806.50	803.35	807.04	803.71	809.50	FES 23-YD 2
	1	43.708	0.19	0.22	0.61	0.12	0.13	5.0	5.7	6.6	0.84	3.13	3.14	8	5.72	806.50	809.00	807.04	809.43	809.50	811.90	YD 24-YD 25
3	2	46.213	0.03	0.03	0.42	0.01	0.01	5.0	5.0	6.9	0.09	3.33	1.05	8	6.49	809.00	812.00	809.43	812.13	811.90	815.00	YD 25-YD 26
Proje	ect File:	Storm 2	⊥ 220.stm													Numbe	r of lines: 3	3		Run Da	te: 7/19/20) 24

NOTES:Intensity = 32.58 / (Inlet time + 3.80) ^ 0.71; Return period =Yrs. 10; c = cir e = ellip b = box

Inlet Report

Line No	Inlet ID	Q = Q Q Q CIA carry capt Byp			Q	Junc	Curb I	nlet	Gra	ate Inlet				G	utter					Inlet		Byp Line
NO		(cfs)	(cfs)	(cfs)	(cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
1	YD 24	0.53	0.01	0.40	0.14	DrGrt	0.0	0.00	0.00	1.96	1.96	0.037	2.00	0.143	0.143	0.030	0.11	3.55	0.11	3.55	0.0	Off
2	YD 25	0.81	0.00	0.64	0.17	DrGrt	0.0	0.00	0.00	1.96	1.96	0.135	2.00	0.200	0.200	0.030	0.10	3.01	0.10	3.01	0.0	Off
3	YD 26	0.09	0.00	0.08	0.01	DrGrt	0.0	0.00	0.00	1.96	1.96	0.143	2.00	0.150	0.150	0.030	0.03	2.41	0.03	2.41	0.0	1

Project File: Storm 220.stm Number of lines: 3 Run Date: 7/19/2024

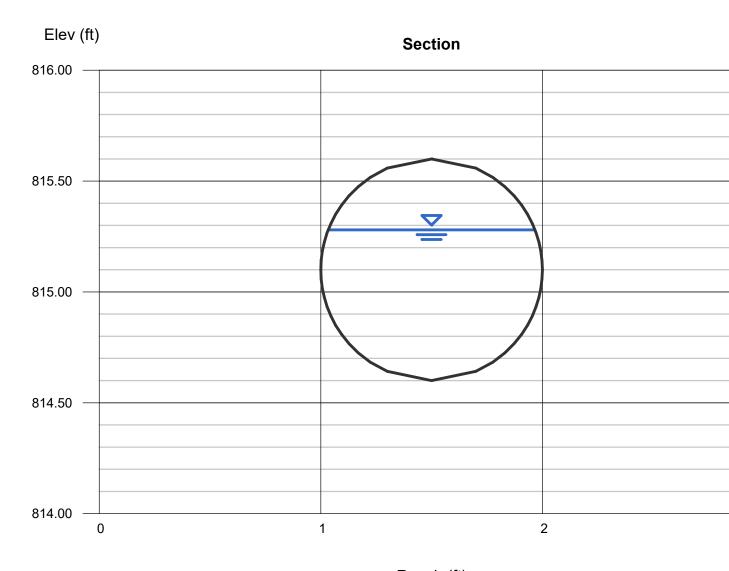
NOTES: Inlet N-Values = 0.016; Intensity = 32.58 / (Inlet time + 3.80) ^ 0.71; Return period = 10 Yrs.; * Indicates Known Q added. All curb inlets are throat.

Hydraulic Grade Line Computations

Line	Size	Q			D	ownstre	eam				Len				Upsti	eam				Chec	k	JL	Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)		Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth (ft)		Vel (ft/s)	Vel head (ft)	elev	Sf (%)	Sf	Enrgy loss (ft)	coeff (K)	loss (ft)
																							<u> </u>
1		1.32	803.00	803.35	0.35		7.17	0.29	803.64	0.000		806.50		0.54**		4.35	0.29	807.34	0.000		n/a	0.50	0.15
2	8	0.84	806.50 809.00	807.04 809.43	0.54		2.77 0.36	0.19	807.23 809.48	0.000		809.00 812.00	809.43 j 812.13 j			3.50 1.74	0.19	809.63 812.18	0.000	0.000	n/a n/a	1.50	n/a n/a

Project File: Storm 220.stm Number of lines: 3 Run Date: 7/19/2024

Notes: ; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box


Channel Report

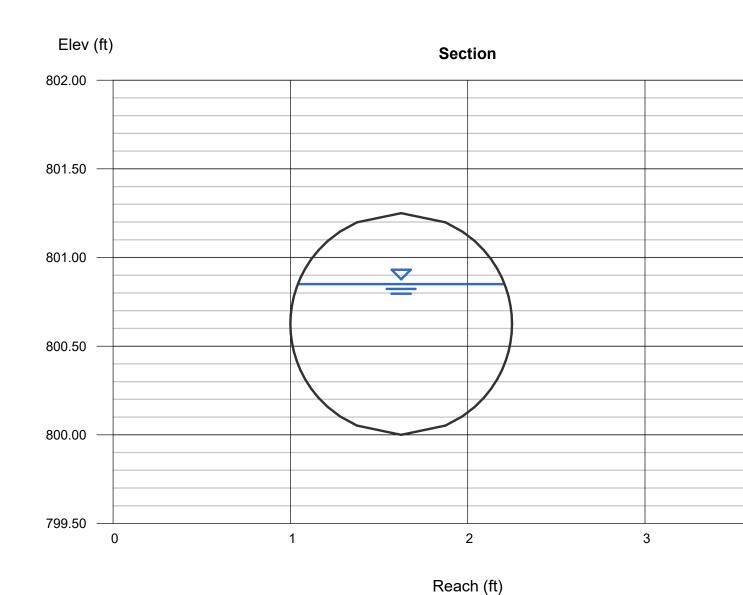
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Sep 13 2024

Outlet 120

Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft)	= 0.68
		Q (cfs)	= 5.410
		Area (sqft)	= 0.57
Invert Elev (ft)	= 814.60	Velocity (ft/s)	= 9.51
Slope (%)	= 3.03	Wetted Perim (ft)	= 1.94
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.94
		Top Width (ft)	= 0.93
Calculations		EGL (ft)	= 2.08
Compute by:	Known Q		
Known Q (cfs)	= 5.41		

Reach (ft)

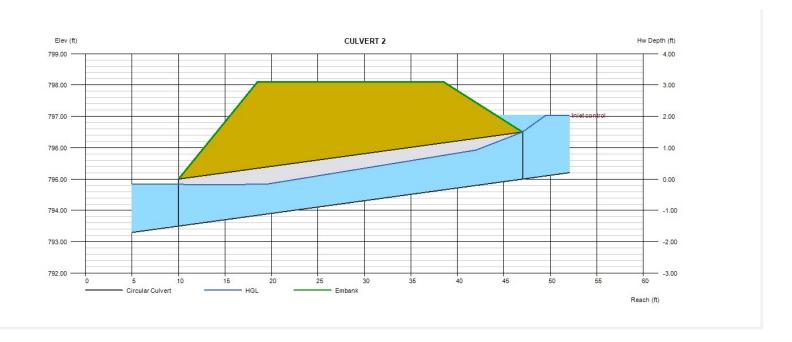

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Jul 19 2024

Outlet 220

Circular		Highlighted	
Diameter (ft)	= 1.25	Depth (ft)	= 0.85
		Q (cfs)	= 6.270
		Area (sqft)	= 0.89
Invert Elev (ft)	= 800.00	Velocity (ft/s)	= 7.05
Slope (%)	= 1.25	Wetted Perim (ft)	= 2.42
N-Value	= 0.012	Crit Depth, Yc (ft)	= 1.02
		Top Width (ft)	= 1.17
Calculations		EGL (ft)	= 1.62
Compute by:	Known Q		
Known Q (cfs)	= 6.27		


Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 29 2024

CULVERT 2

Invert Elev Dn (ft)	= 793.50	Calculations	
Pipe Length (ft)	= 37.00	Qmin (cfs)	= 9.12
Slope (%)	= 4.05	Qmax (cfs)	= 9.12
Invert Elev Up (ft)	= 795.00	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 9.12
No. Barrels	= 1	Qpipe (cfs)	= 9.12
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 5.49
Culvert Entrance	Square edge w/headwall (C)	Veloc Up (ft/s)	= 6.18
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 794.83
		HGL Up (ft)	= 796.17
Embankment		Hw Elev (ft)	= 797.03
Top Elevation (ft)	= 798.10	Hw/D (ft)	= 1.36
Top Width (ft)	= 20.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 11.00		

Outlet Protection Calculations

<u>Project:</u> Wake Robin Inn <u>By:</u> MCB <u>Date:</u> 7/19/2024

<u>Location:</u> Salisbury, CT <u>Checked:</u> <u>Date:</u>

Outlet I.D. FES 1

*Based on Connecticut DOT Drainage Manual, Section 11.13

Description:

FES 1

Design Criteria (100-yr Storm Event):

Q (cfs) = 6.49 $R_p (ft) = 1$ D (in) = 12 $S_p (ft) = 1$ V (fps) = 9.63 Tw (ft) = 1

Q= Flow rate at discharge point in cubic feet per second (cfs)

D= Outlet pipe diameter (in)

V= Flow velocity at discharge point (ft/s)

R_p= Maximum inside pipe rise (ft)

S_p= inside diametere for circular sections of maximum inside pipe span for non-circular sections (ft)

T_w= Tailwater depth (ft)

Based on Table 11.13.1, A Preformed Scour Hole is used One Half Pipe Rise Depression (Type I)

Rip Rap Stone Size:

D ₅₀ Computed (ft)	Rip Rap Specification	D ₅₀ Stone Size Required
0.150	Modified	5 inches

Preformed Scour Hole Dimensions:

$F = 0.5(R_p)$	=	0.5 ft
$C = 3.0(S_p) + 6.0(F)$	=	6ft
$B = 2.0(S_p) + 6.0(F)$	=	5ft
d (Depth of Stone)	=	12 inches

Outlet Protection Calculations

Project: Wake Robin Inn By: MCB Date: 07/19/24

<u>Location:</u> Salisbury, CT <u>Checked:</u> <u>Date:</u>

Outlet I.D. FES 12

*Based on Connecticut DOT Drainage Manual, Section 11.13

Description:

FES 12

Design Criteria (10-yr Storm Event):

 $\begin{array}{lll} Q \ (cfs) = 5.7 & R_p \ (ft) = & 1 \\ D \ (in) = & 12 & S_p \ (ft) = & 1 \\ V \ (fps) = & 7.46 & Tw \ (ft) = & 1.75 \end{array}$

Q= Flow rate at discharge point in cubic feet per second (cfs)

D= Outlet pipe diameter (in)

V= Flow velocity at discharge point (ft/s)

R_p= Maximum inside pipe rise (ft)

 S_p = inside diametere for circular sections of maximum inside pipe span for non-circular sections (ft)

T_w= Tailwater depth (ft)

Based on **Table 11-13.1** use Type 'B' ---> TW≥ 0.5 Rp

Rip Rap Stone Size:

VelocityRip Rap Specification D_{50} Stone Size0-8 fpsModified5 inches

Preformed Scour Hole Dimensions:

 $F(ft)=0.5(R_p)$ = n/a $C(ft)=3.0(S_p)+6.0(F)$ = n/a $B(ft)=2.0(S_p)+6.0(F)$ = n/a

Rip Rap Splash Pad Dimensions:

Outlet Protection Calculations

Project: Wake Robin Inn By: MCB Date: 07/19/24

<u>Location:</u> Salisbury, CT <u>Checked:</u> <u>Date:</u>

Outlet I.D. FES 23

*Based on Connecticut DOT Drainage Manual, Section 11.13

Description:

FES 23

Design Criteria (10-yr Storm Event):

Q (cfs) = 1.32 $R_p (ft) = 0.6666666667$ D (in) = 8 $S_p (ft) = 0.6666666667$

V (fps) = 5.76 Tw (ft)= 0.35

Q= Flow rate at discharge point in cubic feet per second (cfs)

D= Outlet pipe diameter (in)

V= Flow velocity at discharge point (ft/s)

R_p= Maximum inside pipe rise (ft)

 S_p = inside diametere for circular sections of maximum inside pipe span for non-circular sections (ft)

T_w= Tailwater depth (ft)

Based on **Table 11-13.1** use Type 'B' ---> TW≥ 0.5 Rp

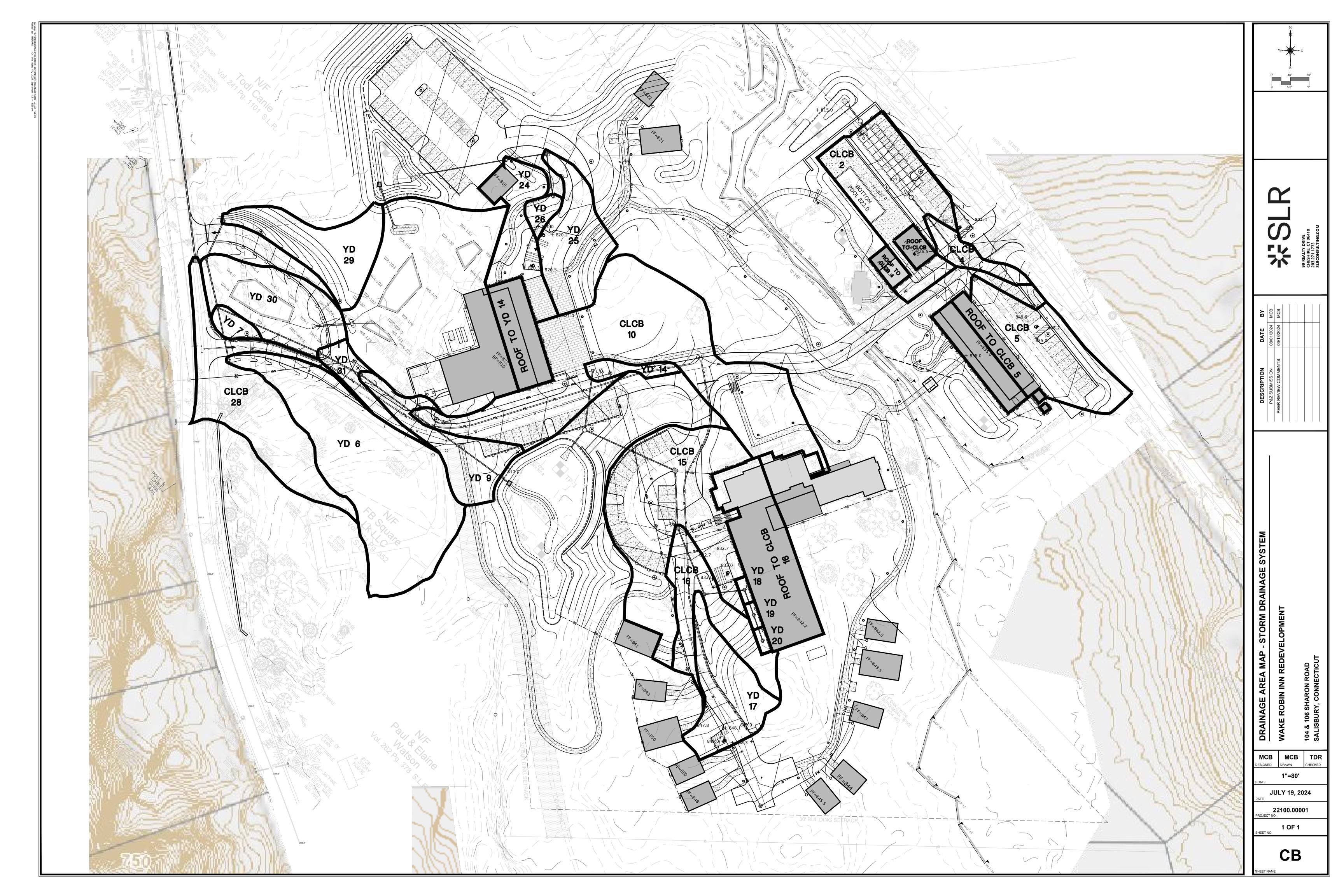
Rip Rap Stone Size:

VelocityRip Rap Specification D_{50} Stone Size0-8 fpsModified5 inches

Preformed Scour Hole Dimensions:

 $\begin{array}{lll} F(ft) = 0.5(R_p) & = & n/a \\ C(ft) = 3.0(S_p) + 6.0(F) & = & n/a \\ B(ft) = 2.0(S_p) + 6.0(F) & = & n/a \\ \end{array}$

Rip Rap Splash Pad Dimensions:


Level Spreader Design

Level Spreader 220

Broad Crest Elevation (ft) 801.00
Length (ft) 30
Discharge Coefficient 3.2
Elevation Increment 0.05

Q-100 year (cfs) 6.27 (DET 220 Discharge)

	Weir Discharge	Area	Velocity
Elevation (Feet)	(cfs)	(sf)	(fps)
801.00	0.00	0.00	0.00
801.05	1.07	1.50	0.72
801.10	3.04	3.00	1.01
801.15	5.58	4.50	1.24
801.16	6.27	4.86	1.29
801.20	8.59	6.00	1.43
801.25	12.00	7.50	1.60
801.30	15.77	9.00	1.75
801.35	19.88	10.50	1.89
801.40	24.29	12.00	2.02
801.45	28.98	13.50	2.15
801.50	33.94	15.00	2.26

Appendix E Water Quality Computations

Wake Robin Inn Redevelopment

104 & 106 Sharon Road, Salisbury, Connecticut

Drainage Report

Prepared for: Aradev LLC 352 Atlantic Avenue, Unit 2 Brooklyn, NY 11217

SLR Project No.: 141.22100.00001

July 19, 2024

Revised August 1, 2024; September 13, 2024

STORMWATER QUALITY CALCULATIONS Water Quality Volume (WQV)

Basin	Total	Impervious	Percent	Volumetric	WQV	Total Volume	Total Volume
ID	Area (ac.)	Area (ac.)	Impervious	Runoff Coeff., R	(ac-ft)	Required (ac-ft)	Provided ^{1.} (ac-ft)
120	0.99	0.49	49%	0.50	0.053	0.053	0.053
210	2.22	1.00	45%	0.46	0.110	0.110	0.110
220	1.11	0.58	52%	0.52	0.063	0.063	0.076

1. Volume provided below low-flow orifice

Where: WQV = Water Quality Volume in acre-feet

A = Contributing Area in acres

R = 0.05 + 0.009 (I)

I = Site Imperviousness as percent

STORMWATER QUALITY CALCULATIONS Water Quality Volume (WQV)

UG 120

Elevation (ft)	Surface Area (ft2)	Volume (ft3)	Volume (ac-ft)	Cumulative Volume (ac-ft)
816.0	1,920	0.0	0.000	0.000
817.0	1,920	1,920.0	0.044	0.044
817.2	1,920	384.0	0.009	0.053

DET 210

Elevation (ft)	Surface Area (ft2)	Volume (ft3)	Volume (ac-ft)	Cumulative Volume (ac-ft)
815.0	7,516	0.0	0.000	0.000
815.6	8,388	4,771.2	0.110	0.110

DET 220

Elevation	Surface Area	Volume	Volume	Cumulative Volume
(ft)	(ft2)	(ft3)	(ac-ft)	(ac-ft)
800.0	879	0.0	0.000	0.000
801.0	1,441	1,160.0	0.027	0.027
802.0	2,039	1,740.0	0.040	0.067
802.2	2,165	420.4	0.010	0.076

	SLR Consu	ulting					Project	22100.00001
	COMPUTA	TION SHEE	Made By:	MCB				
Subject:	ct: Wake Robin Inn							7/18/2024
							Date:	
CDS Unit - M	<u>1H 13</u>							
				1				
			Imperv.					
Contributing			Area	Total Area				
Basins			(acres)	(acres)				
Total			0.46	0.97				
Table 4 4: \A/	(O) / - (D) / D	\/A\/40 -		0.050	-			
Table 4.1: W	$QV = (P)(R_V$,)(A)/12 =		0.050	acre-feet			
Where:				470/				
I = % of Impe				47%				
R_v = volumet			. ,	0.477				
P = design p	recipitation (1.3" for wate	er quality sto	prm) =	1.3	inch	_	
A = site area	(acres) =			0.97	acres =	0.0015	miles ²	
Q = runoff de	onth (in wata	rahad inaha	a) = [\MO\//a	orofoot\1*[1	2/inahaa/f	ioot)]/droip	ogo orog (o	roo)
Q = Turion de	pui (iii wate	isiled iliciles	Q =	0.620	2(11101165/1	oot)j/draini	age area (at	
			Q –	0.020				
CN = 1000 /	[10+ 5P + 10	OQ -10(Q ² +	1.25QP) ^{0.5} 1	=	92			
Where:	[,]					
Q = runoff de	epth (in wate	rshed inches	s)					
			,					
			t _c =	0.1	hours			
Type III Rain	fall Distributi	ion:						
From Table 4		0.174		Ia/P =	0.1338			
(TR-	· · · · · · · · · · · · · · · · · · ·							
From Exhibit	,	630	csm/in.					
(TR-	55)							
WQF = (qu)(,	0.59	cfs			CDS 2015	-4-C Flow =	= 1.4 cfs -> OK

WATER QUALITY FLOW Page 1 of 1

- 2. Compute the time of concentration (t_c) based on the methods described in Chapter 3 of TR-55. A minimum value of 0.167 hours (10 minutes) should be used. For sheet flow, the flow path should not be longer than 300 feet.
- 3. Using the computed CN, t_c , and drainage area (A) in acres, compute the peak discharge for the water quality storm (i.e., the water quality flow [WQF]), based on the procedures described in Chapter 4 of TR-55.
 - O Read initial abstraction (I_a) from Table 4-1 in Chapter 4 of TR-55 (reproduced below); compute I_a/P

Table 4-1 l _a values for runoff curve numbers							
Curve I _a number (in	Curve number	, a	Curve I _a Imber (in)	Curve I _a number (in)			
40 3.00 41 2.87 42 2.76 43 2.65 44 2.54 45 2.44 46 2.32 47 2.25 48 2.16 49 2.08 50 2.00 51 1.92 52 1.84	8 56 2 57 1 58 5 59 4 60 8 61 5 62 7 63 2 64 0 65 2 66			85 0.353 86 0.326 87 0.299 88 0.273 89 0.247 90 0.222 91 0.198 92 0.174 93 0.151 94 0.128 95 0.105 96 0.083 97 0.062			
53	.			98 0.041			

O Read the unit peak discharge (q_u) from Exhibit 4-III in Chapter 4 of TR-55 (reproduced below) for appropriate t_c

Exhibit 4-III Unit peak discharge (q_u) for NRCS (SCS) type III rainfall distribution

Product Flow Rates

CASCADE		
Model	Treatment Rate	Sediment Capacity ¹
Model	(cfs)	(CF)
CS-4	2.00	19
CS-5	3.50	29
CS-6	5.60	42
CS-8	12.00	75
CS-10	18.00	118

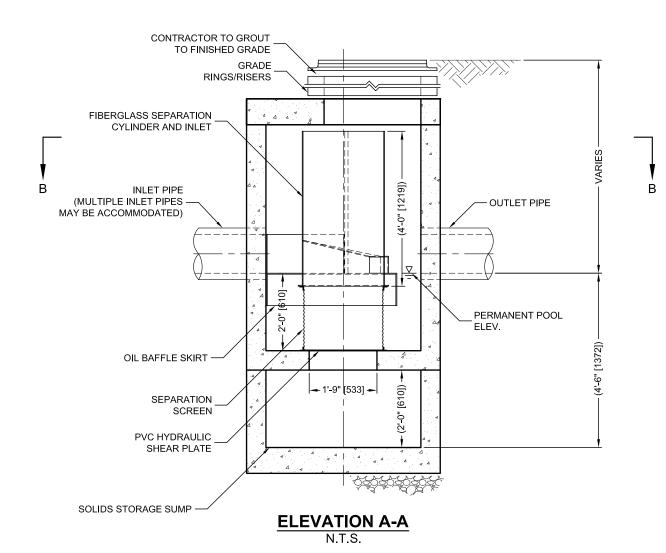
VORTECHS		
Model	Treatment Rate	Sediment Capacity ³
Model	(cfs)	(CF)
1000	1.60	16
2000	2.80	32
3000	4.50	49
4000	6.00	65
5000	8.50	86
7000	11.00	108
9000	14.00	130
11000	17.5	151
16000	25	192

CDS		
Model	Treatment Rate ² (cfs)	Sediment Capacity ¹ (CF)
1515-3	1.00	14
2015-4	1.40	25
2015-5	1.40	39
2015-6	1.40	57
2020-5	2.20	39
2020-6	2.20	57
2025-5	3.20	39
2025-6	3.20	57
3020-6	3.90	57
3025-6	5.00	57
3030-6	5.70	57
3035-6	6.50	57
4030-8	7.50	151
4040-8	9.50	151

STORMCEPTOR STC							
Model	Treatment Rate (cfs)	Sediment Capacity ¹ (CF)					
STC 450i	0.40	46					
STC 900	0.89	89					
STC 2400	1.58	205					
STC 4800	2.47	543					
STC 7200	3.56	839					
STC 11000	4.94	1086					
STC 16000	7.12	1677					

- 1 Additional sediment storage capacity available Check with your local representative for information.
- 2 Treatment Capacity is based on laboratory testing using OK-110 (average D50 particle size of approximately 100 microns) and a 2400 micron screen.
- 3 Maintenance recommended when sediment depth has accumulated to within 12-18 inches of the dry weather water surface elevation.

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.


Get social with us: fin 🔽 🕞

800-338-1122 | www.ContechES.com

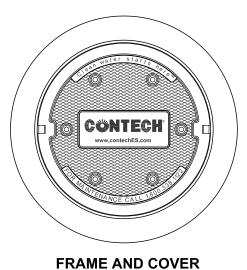
PLAN VIEW B-B

CDS2015-4-C DESIGN NOTES

THE STANDARD CDS2015-4-C CONFIGURATION IS SHOWN. ALTERNATE CONFIGURATIONS ARE AVAILABLE AND ARE LISTED BELOW. SOME CONFIGURATIONS MAY BE COMBINED TO SUIT SITE REQUIREMENTS.

CONFIGURATION DESCRIPTION

GRATED INLET ONLY (NO INLET PIPE)


GRATED INLET WITH INLET PIPE OR PIPES

CURB INLET ONLY (NO INLET PIPE)

CURB INLET WITH INLET PIPE OR PIPES

SEPARATE OIL BAFFLE (SINGLE INLET PIPE REQUIRED FOR THIS CONFIGURATION)

SEDIMENT WEIR FOR NJDEP / NJCAT CONFORMING UNITS

(DIAMETER VARIES)

N.T.S.

SITE SPECIFIC DATA REQUIREMENTS					
STRUCTURE ID					
WATER QUALITY	FLOW RAT	Ε ((CFS OR L/s)		*
PEAK FLOW RAT					*
RETURN PERIOD	•				*
SCREEN APERTU					*
	, , , , , ,		,		<u>'</u>
PIPE DATA:	I.E.	1	MATERIAL	D	IAMETER
INLET PIPE 1	*		*		*
INLET PIPE 2	*		*		*
OUTLET PIPE	*		*		*
RIM ELEVATION					*
ANTI-FLOTATION BALLAST WIDTH HEIGHT * *					
NOTES/SPECIAL REQUIREMENTS:					
* PER ENGINEER	OF RECOR	D			

GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- 2. DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY.
- 3. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH ENGINEERED SOLUTIONS LLC REPRESENTATIVE. www.contechES.com
- 4. CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING.
- 5. STRUCTURE SHALL MEET AASHTO HS20 AND CASTINGS SHALL MEET HS20 (AASHTO M 306) LOAD RATING, ASSUMING GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION.
- 6. PVC HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYLINDER. REMOVE AND REPLACE AS NECESSARY DURING MAINTENANCE CLEANING.

INSTALLATION NOTE

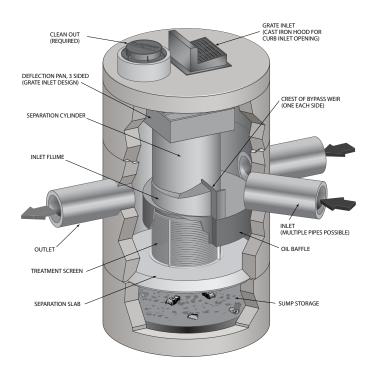
- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS MANHOLE STRUCTURE (LIFTING CLUTCHES PROVIDED).
- C. CONTRACTOR TO ADD JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS, AND ASSEMBLE STRUCTURE.
- D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH PIPE INVERTS WITH ELEVATIONS SHOWN.
- E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.

CDS2015-4-C INLINE CDS STANDARD DETAIL

CDS Guide Operation, Design, Performance and Maintenance

CDS®

Using patented continuous deflective separation technology, the CDS system screens, separates and traps debris, sediment, and oil and grease from stormwater runoff. The indirect screening capability of the system allows for 100% removal of floatables and neutrally buoyant material without blinding. Flow and screening controls physically separate captured solids, and minimize the re-suspension and release of previously trapped pollutants. Inline units can treat up to 6 cfs, and internally bypass flows in excess of 50 cfs (1416 L/s). Available precast or cast-in-place, offline units can treat flows from 1 to 300 cfs (28.3 to 8495 L/s). The pollutant removal capacity of the CDS system has been proven in lab and field testing.


Operation Overview

Stormwater enters the diversion chamber where the diversion weir guides the flow into the unit's separation chamber and pollutants are removed from the flow. All flows up to the system's treatment design capacity enter the separation chamber and are treated.

Swirl concentration and screen deflection force floatables and solids to the center of the separation chamber where 100% of floatables and neutrally buoyant debris larger than the screen apertures are trapped.

Stormwater then moves through the separation screen, under the oil baffle and exits the system. The separation screen remains clog free due to continuous deflection.

During the flow events exceeding the treatment design capacity, the diversion weir bypasses excessive flows around the separation chamber, so captured pollutants are retained in the separation cylinder.

Design Basics

There are three primary methods of sizing a CDS system. The Water Quality Flow Rate Method determines which model size provides the desired removal efficiency at a given flow rate for a defined particle size. The Rational Rainfall Method™ or the and Probabilistic Method is used when a specific removal efficiency of the net annual sediment load is required.

Typically in the Unites States, CDS systems are designed to achieve an 80% annual solids load reduction based on lab generated performance curves for a gradation with an average particle size (d50) of 125 microns (μ m). For some regulatory environments, CDS systems can also be designed to achieve an 80% annual solids load reduction based on an average particle size (d50) of 75 microns (μ m) or 50 microns (μ m).

Water Quality Flow Rate Method

In some cases, regulations require that a specific treatment rate, often referred to as the water quality design flow (WQQ), be treated. This WQQ represents the peak flow rate from either an event with a specific recurrence interval, e.g. the six-month storm, or a water quality depth, e.g. 1/2-inch (13 mm) of rainfall.

The CDS is designed to treat all flows up to the WQQ. At influent rates higher than the WQQ, the diversion weir will direct most flow exceeding the WQQ around the separation chamber. This allows removal efficiency to remain relatively constant in the separation chamber and eliminates the risk of washout during bypass flows regardless of influent flow rates.

Treatment flow rates are defined as the rate at which the CDS will remove a specific gradation of sediment at a specific removal efficiency. Therefore the treatment flow rate is variable, based on the gradation and removal efficiency specified by the design engineer.

Rational Rainfall Method™

Differences in local climate, topography and scale make every site hydraulically unique. It is important to take these factors into consideration when estimating the long-term performance of any stormwater treatment system. The Rational Rainfall Method combines site-specific information with laboratory generated performance data, and local historical precipitation records to estimate removal efficiencies as accurately as possible.

Short duration rain gauge records from across the United States and Canada were analyzed to determine the percent of the total annual rainfall that fell at a range of intensities. US stations' depths were totaled every 15 minutes, or hourly, and recorded in 0.01-inch increments. Depths were recorded hourly with 1-mm resolution at Canadian stations. One trend was consistent at all sites; the vast majority of precipitation fell at low intensities and high intensity storms contributed relatively little to the total annual depth.

These intensities, along with the total drainage area and runoff coefficient for each specific site, are translated into flow rates using the Rational Rainfall Method. Since most sites are relatively small and highly impervious, the Rational Rainfall Method is appropriate. Based on the runoff flow rates calculated for each intensity, operating rates within a proposed CDS system are

determined. Performance efficiency curve determined from full scale laboratory tests on defined sediment PSDs is applied to calculate solids removal efficiency. The relative removal efficiency at each operating rate is added to produce a net annual pollutant removal efficiency estimate.

Probabilistic Rational Method

The Probabilistic Rational Method is a sizing program Contech developed to estimate a net annual sediment load reduction for a particular CDS model based on site size, site runoff coefficient, regional rainfall intensity distribution, and anticipated pollutant characteristics.

The Probabilistic Method is an extension of the Rational Method used to estimate peak discharge rates generated by storm events of varying statistical return frequencies (e.g. 2-year storm event). Under the Rational Method, an adjustment factor is used to adjust the runoff coefficient estimated for the 10-year event, correlating a known hydrologic parameter with the target storm event. The rainfall intensities vary depending on the return frequency of the storm event under consideration. In general, these two frequency dependent parameters (rainfall intensity and runoff coefficient) increase as the return frequency increases while the drainage area remains constant.

These intensities, along with the total drainage area and runoff coefficient for each specific site, are translated into flow rates using the Rational Method. Since most sites are relatively small and highly impervious, the Rational Method is appropriate. Based on the runoff flow rates calculated for each intensity, operating rates within a proposed CDS are determined. Performance efficiency curve on defined sediment PSDs is applied to calculate solids removal efficiency. The relative removal efficiency at each operating rate is added to produce a net annual pollutant removal efficiency estimate.

Treatment Flow Rate

The inlet throat area is sized to ensure that the WQQ passes through the separation chamber at a water surface elevation equal to the crest of the diversion weir. The diversion weir bypasses excessive flows around the separation chamber, thus preventing re-suspension or re-entrainment of previously captured particles.

Hydraulic Capacity

The hydraulic capacity of a CDS system is determined by the length and height of the diversion weir and by the maximum allowable head in the system. Typical configurations allow hydraulic capacities of up to ten times the treatment flow rate. The crest of the diversion weir may be lowered and the inlet throat may be widened to increase the capacity of the system at a given water surface elevation. The unit is designed to meet project specific hydraulic requirements.

Performance

Full-Scale Laboratory Test Results

A full-scale CDS system (Model CDS2020-5B) was tested at the facility of University of Florida, Gainesville, FL. This CDS unit was evaluated under controlled laboratory conditions of influent flow rate and addition of sediment.

Two different gradations of silica sand material (UF Sediment & OK-110) were used in the CDS performance evaluation. The particle size distributions (PSDs) of the test materials were analyzed using standard method "Gradation ASTM D-422 "Standard Test Method for Particle-Size Analysis of Soils" by a certified laboratory.

UF Sediment is a mixture of three different products produced by the U.S. Silica Company: "Sil-Co-Sil 106", "#1 DRY" and "20/40 Oil Frac". Particle size distribution analysis shows that the UF Sediment has a very fine gradation (d50 = 20 to 30 μ m) covering a wide size range (Coefficient of Uniformity, C averaged at 10.6). In comparison with the hypothetical TSS gradation specified in the NJDEP (New Jersey Department of Environmental Protection) and NJCAT (New Jersey Corporation for Advanced Technology) protocol for lab testing, the UF Sediment covers a similar range of particle size but with a finer d50 (d50 for NJDEP is approximately 50 μ m) (NJDEP, 2003).

The OK-110 silica sand is a commercial product of U.S. Silica Sand. The particle size distribution analysis of this material, also included in Figure 1, shows that 99.9% of the OK-110 sand is finer than 250 microns, with a mean particle size (d50) of 106 microns. The PSDs for the test material are shown in Figure 1.

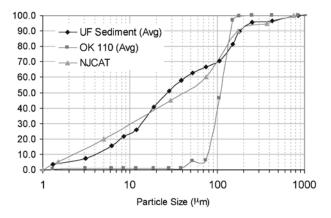


Figure 1. Particle size distributions

Tests were conducted to quantify the performance of a specific CDS unit (1.1 cfs (31.3-L/s) design capacity) at various flow rates, ranging from 1% up to 125% of the treatment design capacity of the unit, using the 2400 micron screen. All tests were conducted with controlled influent concentrations of approximately 200 mg/L. Effluent samples were taken at equal time intervals across the entire duration of each test run. These samples were then processed with a Dekaport Cone sample splitter to obtain representative sub-samples for Suspended Sediment Concentration (SSC) testing using ASTM D3977-97 "Standard Test Methods for Determining Sediment Concentration in Water Samples", and particle size distribution analysis.

Results and Modeling

Based on the data from the University of Florida, a performance model was developed for the CDS system. A regression analysis was used to develop a fitting curve representative of the scattered data points at various design flow rates. This model, which demonstrated good agreement with the laboratory data, can then be used to predict CDS system performance with respect

to SSC removal for any particle size gradation, assuming the particles are inorganic sandy-silt. Figure 2 shows CDS predictive performance for two typical particle size gradations (NJCAT gradation and OK-110 sand) as a function of operating rate.

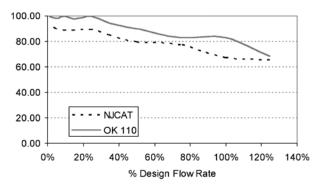


Figure 2. CDS stormwater treatment predictive performance for various particle gradations as a function of operating rate.

Many regulatory jurisdictions set a performance standard for hydrodynamic devices by stating that the devices shall be capable of achieving an 80% removal efficiency for particles having a mean particle size (d50) of 125 microns (e.g. Washington State Department of Ecology — WASDOE - 2008). The model can be used to calculate the expected performance of such a PSD (shown in Figure 3). The model indicates (Figure 4) that the CDS system with 2400 micron screen achieves approximately 80% removal at the design (100%) flow rate, for this particle size distribution (d50 = 125 μ m).

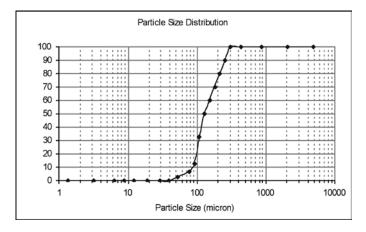


Figure 3. WASDOE PSD

CDS Unit Performance for Ecology PSD

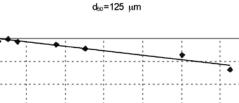


Figure 4. Modeled performance for WASDOE PSD.

Maintenance

The CDS system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit. For example, unstable soils or heavy winter sanding will cause the grit chamber to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (e.g. spring and fall) however more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment washdown areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

The visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet and separation screen. The inspection should also quantify the accumulation of hydrocarbons, trash, and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified

100

during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is provided.

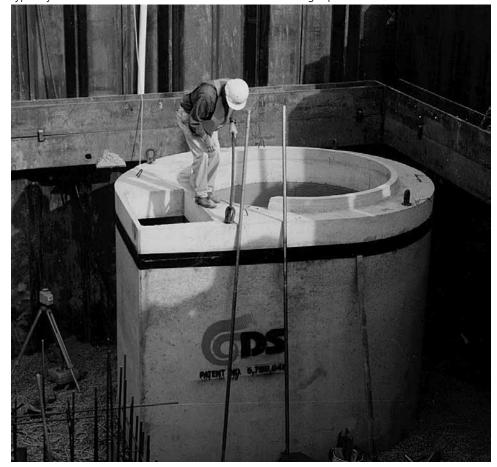
Access to the CDS unit is typically achieved through two manhole access covers. One opening allows for inspection and cleanout of the separation chamber (cylinder and screen) and isolated sump. The other allows for inspection and cleanout of sediment captured and retained outside the screen. For deep units, a single manhole access point would allows both sump cleanout and access outside the screen.

The CDS system should be cleaned when the level of sediment has reached 75% of capacity in the isolated sump or when an appreciable level of hydrocarbons and trash has accumulated. If absorbent material is used, it should be replaced when significant discoloration has occurred. Performance will not be impacted until 100% of the sump capacity is exceeded however it is recommended that the system be cleaned prior to that for easier removal of sediment. The level of sediment is easily determined by measuring from finished grade down to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Particles at the top of the pile typically offer less resistance to the end of the rod than consolidated particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the as-built drawing for the unit to determine weather the height of the sediment pile off the bottom of the sump floor exceeds 75% of the total height of isolated sump.

Cleaning

Cleaning of a CDS systems should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole covers and insert the vacuum hose into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The area outside the screen should also be cleaned out if pollutant build-up exists in this area.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. The screen should be cleaned to ensure it is free of trash and debris.


Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure that proper safety precautions have been followed. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the CDS system should be done in accordance with local regulations. In many jurisdictions, disposal of the sediments may be handled in the same manner as the disposal of sediments removed from catch basins or deep sump manholes. Check your local regulations for specific requirements on disposal.

CDS Model	Dian	neter		Water Surface ediment Pile	Sediment Storage Capacity	
	ft	m	ft	m	y³	m³
CDS1515	3	0.9	3.0	0.9	0.5	0.4
CDS2015	4	1.2	3.0	0.9	0.9	0.7
CDS2015	5	1.5	3.0	0.9	1.3	1.0
CDS2020	5	1.5	3.5	1.1	1.3	1.0
CDS2025	5	1.5	4.0	1.2	1.3	1.0
CDS3020	6	1.8	4.0	1.2	2.1	1.6
CDS3025	6	1.8	4.0	1.2	2.1	1.6
CDS3030	6	1.8	4.6	1.4	2.1	1.6
CDS3035	6	1.8	5.0	1.5	2.1	1.6
CDS4030	8	2.4	4.6	1.4	5.6	4.3
CDS4040	8	2.4	5.7	1.7	5.6	4.3
CDS4045	8	2.4	6.2	1.9	5.6	4.3
CDS5640	10	3.0	6.3	1.9	8.7	6.7
CDS5653	10	3.0	7.7	2.3	8.7	6.7
CDS5668	10	3.0	9.3	2.8	8.7	6.7
CDS5678	10	3.0	10.3	3.1	8.7	6.7

Table 1: CDS Maintenance Indicators and Sediment Storage Capacities

Note: To avoid underestimating the volume of sediment in the chamber, carefully lower the measuring device to the top of the sediment pile. Finer silty particles at the top of the pile may be more difficult to feel with a measuring stick. These finer particles typically offer less resistance to the end of the rod than larger particles toward the bottom of the pile.

CDS Inspection & Maintenance Log

CDS Model:	Location:

Date	Water depth to sediment ¹	Floatable Layer Thickness ²	Describe Maintenance Performed	Maintenance Personnel	Comments

^{1.} The water depth to sediment is determined by taking two measurements with a stadia rod: one measurement from the manhole opening to the top of the sediment pile and the other from the manhole opening to the water surface. If the difference between these measurements is less than the values listed in table 1 the system should be cleaned out. Note: to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

^{2.} For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.

SUPPORT

- Drawings and specifications are available at www.ContechES.com.
- Site-specific design support is available from our engineers.


©2017 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, earth stabilization and stormwater treatment products. For information on other Contech division offerings, visit www.ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266; related foreign patents or other patents pending.

Appendix F Hydrologic Analysis-Imput Computations

Wake Robin Inn Redevelopment

104 & 106 Sharon Road, Salisbury, Connecticut

Drainage Report

Prepared for: Aradev LLC 352 Atlantic Avenue, Unit 2 Brooklyn, NY 11217

SLR Project No.: 141.22100.00001

July 19, 2024

Revised August 1, 2024; September 13, 2024

	Curve Number Ca	alcula	ation	s		
-	Wake Robin Inn Redevelopment 104 & 106 Sharon Road Salisbury, CT	-				
Ву:	MCB Date: Rev. 8/29/24 Ch	- necked:			Date:	
Circle one:	<u>Present</u> Developed Wat	ershed:				
Soil Name and	Cover Description	CI	N Value	e ^{1.}	Area	Product of
Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	CN x Area
B Soil	Woods - Good Condition	55			0.11	5.86
B Soil	Gravel	96			0.01	0.75
D Soil	Woods - Good Condition	77			2.29	176.68
D Soil	Open Space - Good Condition	80			0.01	0.83
N/A	Existing Building	98			0.04	3.59
			Tota	als =	2.46	187.72
				(0.00384	sq mi)
CN (weighted) = =	7.72 .46	• Use	e CN =	76	

-	Wake Robin Inn Redevelopment	_				
Location:	104 & 106 Sharon Road			-		
Rv:	Salisbury, CT MCB Date: Rev. 8/29/24	— Checked			Date:	
-	Present Developed	Checked: Watershed:			Date.	
Onoic onc.	<u>Present</u> Beveloped	vvaloronea.				
Soil Name	Cover Description	CN \	∕alue ^{1.}		Area	Product
and	,					of
Hydrologic	(cover type, treatment, and					CN x Area
Group	hydrologic condition;	, ⁴	2-3	2-4	Acres	
	percent impervious;	Table 2-2	Figure 2-3		Sq. Ft.	
	unconnected/connected impervious	l ge	nß	Figure 3	%	
appendix A)	area ratio)	Ĕ	正	ᇤ		
B Soil	Woods - Good Condition	55			2.80	154.20
B Soil	Open Space - Good Condition	61			0.94	57.07
B Soil	Gravel	96			0.34	32.72
C Soil	Woods - Good Condition	70			1.52	106.74
D Soil	Woods - Good Condition	77			9.40	723.63
D Soil	Open Space - Good Condition	80			0.73	58.06
D Soil	Gravel	96			0.06	5.79
N/A	Paved/Impervious	98			0.08	7.44
N/A	Existing Building	98			0.19	18.46
			Tota	als =	16.05	1164.11
				(0.02508	sq mi)
	weighted) = total product =	1164.11	Had	e CN =	73	Ī

Soil Name and Hydrologic Group		Wake Robin Inn Redevelopment 104 & 106 Sharon Road	_				
Circle one: Present Developed Watershed: Cover Description and lydrologic Group Cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio) D Soil Woods - Good Condition Posoil Gravel Pos		Salisbury, CT	_		-		
Soil Name and lydrologic Group (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio) D Soil Woods - Good Condition D Soil Open Space - Good Condition D Soil Gravel N/A Paved/Impervious N/A Existing Building CN Value 1. Area Acres Sq. Ft. % 9	•	MCB Date: Rev. 8/29/24 C	hecked:			Date:	
and dydrologic Group (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio) D Soil Woods - Good Condition D Soil Open Space - Good Condition D Soil Gravel N/A Paved/Impervious N/A Existing Building Of CN x Area Acres Sq. Ft. % P P P P P P P P P P P P P P P P P P	Circle one:	<u>Present</u> Developed war	tersnea:				
Acres Sq. Ft. % D Soil Woods - Good Condition D Soil Gravel D So	Soil Name	Cover Description	CI	N Value	e ^{1.}	Area	Product
D Soil Open Space - Good Condition 80 0.51 40.91 D Soil Gravel 96 0.38 36.78 N/A Paved/Impervious 98 0.31 30.81 N/A Existing Building 98 0.39 38.48	Hydrologic	hydrologic condition; percent impervious; unconnected/connected impervious	Table 2-2	Figure 2-3	Figure 2-4	Sq. Ft.	of CN x Area
D Soil Gravel 96 0.38 36.78 N/A Paved/Impervious 98 0.31 30.81 N/A Existing Building 98 0.39 38.48	D Soil	Woods - Good Condition	77			3.39	261.35
N/A Paved/Impervious 98 0.31 30.81 N/A Existing Building 98 0.39 38.48	D Soil	Open Space - Good Condition	80			0.51	40.91
N/A Existing Building 98 0.39 38.48	D Soil	Gravel	96			0.38	36.78
	N/A	Paved/Impervious	98			0.31	30.81
Totals = 5.00 408.33	N/A	Existing Building	98			0.39	38.48
Totals = 5.00 408.33							
Totals = 5.00 408.33							
Totals = 5.00 408.33							
Totals = 5.00 408.33							
Totals = 5.00 408.33							
Totals = 5.00 408.33							
ı		I.		Tota	als =	5.00	408.33
1 otals = 1 - 5.00 - 1 - 2							

Location:	Wake Robin Inn Redevelopment 104 & 106 Sharon Road Salisbury, CT MCB Date: Rev. 8/29/24 Ct	- necked:			Data	
•		ershed:			Date.	
Soil Name and	Cover Description	CI	N Value	e ^{1.}	Area	Product of
Hydrologic Group appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	CN x Area
D Soil	Woods - Good Condition	77			1.66	127.98
N/A	Existing Building	98			0.01	1.00
			Tota	als = (1.67 0.00261	128.98 sq mi)

Location:		- hecked:			Date:	
Soil Name and Hydrologic Group (appendix A)	Cover Description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	Product of CN x Area
B Soil	Open Space - Good Condition	61			0.04	2.55
B Soil	Gravel	85			0.003	0.25
D Soil	Woods - Good Condition	77			0.05	4.02
D Soil	Open Space - Good Condition	80			0.95	76.26
D Soil	Gravel	91			0.02	1.79
N/A	Paved/Impervious	98			0.02	1.75
N/A	Building	98			0.02	1.56
			Tota	als =	1.10	88.19
CN (v	weighted) =	8.19 .10		(: CN =	0.00172	sq mi)

Location:		alcula			Date:	
Soil Name and Hydrologic Group	Cover Description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)		Figure 2-3		Area Acres Sq. Ft. %	Product of CN x Area
B Soil	Woods - Good Condition	55			2.31	127.20
B Soil	Open Space - Good Condition	61			1.27	77.58
B Soil	Gravel	96			0.03	3.10
C Soil	Woods - Good Condition	70			1.52	106.74
D Soil	Woods - Good Condition	77			7.67	590.82
D Soil	Open Space - Good Condition	80			1.81	144.98
D Soil	Gravel	96			0.14	13.16
N/A	Paved/Impervious	98			0.21	20.44
N/A	Building	98			0.46	44.92
		!	Tota	als =	15.43 0.02411	1128.93 sq mi)

1128.93 15.43

Use CN =

total product total area

CN (weighted) =

73

Location:		- hecked:			Date:	
Circle one: Soil Name and	Present <u>Developed</u> Water Cover Description	tershed:	PRWS N Value		Area	Product of
Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	CN x Area
B Soil	Open Space - Good Condition	61			0.13	7.76
B Soil	Gravel	96			0.08	7.38
D Soil	Woods - Good Condition	77			0.03	2.16
D Soil	Open Space - Good Condition	80			0.26	20.99
D Soil	Gravel	96			0.05	4.64
N/A	Paved/Impervious	98			0.34	33.65
N/A	Building	98			0.10	9.71
			Tota	als =	0.99 0.00154	86.30 sq mi)
CN (weighted) = =	6.30	• Use	cN =	88	

	Curve Number C	alcula	ation	S		
	Wake Robin Inn Redevelopment 104 & 106 Sharon Road Salisbury, CT	-				
•	MCB Date: Rev. 8/29/24 CI	- necked: ershed:			Date:	
Soil Name and	Cover Description	CI	N Value	e ^{1.}	Area	Product of
Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	CN x Area
D Soil	Woods - Good Condition	77			1.20	92.18
D Soil	Open Space - Good Condition	80			1.19	94.87
D Soil	Gravel	96			0.14	13.58
N/A	Paved/Impervious	98			0.41	40.30
N/A	Building	98			0.12	11.30
		1	Tota	als =	3.05 0.00477	252.23 sq mi)
CN (weighted) =	2.23	· Use	e CN =	83	

	104 & 106 Sharon Road	<u>-</u>		_		
D. a	Salisbury, CT MCB Date: Rev. 8/29/24 Cr	iecked:			Data	
Circle one:		ershed:		5-21	Date.	
Soil Name and	Cover Description	CI	N Value	e ^{1.}	Area	Product of
Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	CN x Area
D Soil	Woods - Good Condition	77			0.05	3.78
D Soil	Open Space - Good Condition	80			1.16	92.98
D Soil	Gravel	96			0.14	13.87
N/A	Paved/Impervious	98			0.38	37.10
N/A	Building	98			0.48	47.17
			Tota	als = (2.22 0.00346	194.90 sq mi)

	Curve Number Ca	alcula	ation	S		
	Wake Robin Inn Redevelopment 104 & 106 Sharon Road	-				
_	Salisbury, CT MCB Date: Rev. 8/29/24 Ch Present Developed Wat	- necked: ershed:			Date:	
Soil Name and	Cover Description	CI	N Value	e ^{1.}	Area	Product of
Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	CN x Area
D Soil	Woods - Good Condition	77			0.004	0.29
D Soil	Open Space - Good Condition	80			0.52	41.76
D Soil	Gravel	96			0.26	25.26
N/A	Paved/Impervious	98			0.30	29.45
N/A	Building	98			0.02	1.94
			Tota	als =	1.11	98.71 sq mi)
CN (weighted) = =	3.71 .11	· Use	e CN =	89	5q IIII)

	Curve Number Ca	alcula	ations	S					
Project:	Wake Robin Inn Redevelopment	_							
Location: 104 & 106 Sharon Road									
5	Salisbury, CT				5.4				
Ву: Circle one:		necked: ershed:		. 20	Date:				
Circle one.	riesent <u>Developeu</u> wat	ersneu.	PRWS	-30					
Soil Name	Cover Description	CI	N Value	^{1.}	Area	Product			
and	·					of			
Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	CN x Area			
D Soil	Woods - Good Condition	77			0.81	62.55			
D Soil	Open Space - Good Condition	80			0.40	31.72			
D Soil	Gravel	96			0.07	6.76			
N/A	Paved/Impervious	98			0.04	3.53			
			Tota	als =	1.32	104.56			
				(0.00206	sq mi)			
CN (weighted) =	4.56 .32	· Use	: CN =	79				

Project: Wake Robin Inn Redevelopment By: MCB Date:	07/19/24	
Location: Salisbury, CT Checked: Date:		
Circle one: Present Developed Watershed: EXWS-10		
Circle one: $\underline{\mathbf{T}}_{\mathbf{c}}$ $\mathbf{T}_{\mathbf{t}}$ Subwatershed:		
Sheet flow (applicable to T _c only)		
Segment ID A-B 1. Surface description (Table 3-1) WOODS		
2. Manning's roughness coeff. for sheet flow, n (Table 3-1) 0.400		
3. Flow Length, L (< 300ft) ft. 100.0		
4. Two-year 24-hr rainfall, P ₂ in. 3.08		
5. Land slope, s ft./ft. 0.070		
·		
6. $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} (s^{0.4})}$ hr. $0.221 = 0.221$		
P_2 (S) III. 0.221 0.221		
Shallow concentrated flow (assume hyd. radius = depth of flow)		
Segment ID B-C		
7. Surface description WOODS		
8. Manning's roughness coeff., n		
9. Paved or unpaved UNPVD UNPVD		
10. Depth of flow, d (default values: d=.4 unpaved, d=.2 paved) ft. 0.40 11. Flow Length, L ft. 108.0		
12. Watercourse slope, s ft./ft. 0.056		
13. Average velocity, $V = \frac{1.49}{n} (d^{\frac{2}{3}}) (s^{\frac{1}{2}})$ fps. 1.91		
14. $T_t = \frac{L}{3600 * V}$ br 0.016		
hr. 0.016 hr. 0.016		0.016
Channel flow		
Segment ID Segment ID		
15. Channel Bottom width, b		
16. Horizontal side slope component, z (z horiz:1 vert) ft.		
17. Depth of flow, d		
18. Cross sectional flow area, A (assume trapazoidal) ft. ²		
19. Wetted perimeter, P _w ft.		
20. Hydraulic Radius, $R = \frac{A}{P_w}$ ft.		
21. Channel slope, s		
22. Manning's roughness coeff., n		
23. $V = \frac{1.49}{n} (R^{\frac{2}{3}}) (s^{\frac{1}{2}})$ fps.		
24. Flow length, L		
25. $T_{t} = \frac{L}{3600 * V}$ hr.	=	0000
25. 1, = 3600 * V hr. hr.	L -	0.000
26. Watershed or subarea T_c or T_t (add T_t in steps 6, 14 & 25)	hr.	0.237

Drainet Wake Dahin Inn Dadayalanmant	Dr. MCD	Data: 07/40/04	
Project: Wake Robin Inn Redevelopment	By: <u>MCB</u> necked:	Date:07/19/24	
	ershed: EXWS-11	Date:	
	tershed:		
Office offe. It Subwat			
Sheet flow (applicable to T _c only)			
Segm	ent ID A-B		
Surface description (Table 3-1)	WOODS		
2. Manning's roughness coeff. for sheet flow, n (Table 3-	<i>'</i>		
3. Flow Length, L (< 300ft)	ft. 100.0		
4. Two-year 24-hr rainfall, P ₂	in. 3.08		
5. Land slope, s	ft./ft. 0.035		
6. $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} (s^{0.4})}$	=		
$P_2^{0.5}(s^{0.4})$	hr. 0.292 0.292		
Shallow concentrated flow (assume hyd. radius = depth of flow	w)		
_	ent ID B-C		
7. Surface description	WOODS		
8. Manning's roughness coeff., n	0.100		
9. Paved or unpaved	UNPVD		
- 1 , ()	ft. 0.40		
11. Flow Length, L	ft. 1176.0		
12. Watercourse slope, s	ft./ft. 0.013		
13. Average velocity, $V = \frac{1.49}{n} (d^{\frac{2}{3}}) (s^{\frac{1}{2}})$	fps. 0.92		
14. $T_t = \frac{L}{3600*V}$			
3600 * V	hr. 0.354).354
Channel flow			
	ent ID C-D D-E		
15. Channel Bottom width, b	ft. 12" RCP 6.00		
16. Horizontal side slope component, z (z horiz:1 vert)	ft 4.00		
17. Depth of flow, d	ft. FULL 1.00		
18. Cross sectional flow area, A (assume trapazoidal)	ft. ² 0.79 10.00		
19. Wetted perimeter, P _w	ft. 3.14 14.25		
20. Hydraulic Radius, $R = \frac{A}{P_{w}}$	ft. 0.25 0.70		
21. Channel slope, s	ft./ft. 0.006 0.057		
22. Manning's roughness coeff., n	0.013 0.024		
23. $V = \frac{1.49}{n} (R^{\frac{2}{3}}) (s^{\frac{1}{2}})$	fps. 3.54 11.71		
24. Flow length, L	ft. 31.0 514.0		
25. $T_{t} = \frac{L}{3600 * V}$	+	= -	
	hr. <u>0.002</u> <u>0.012</u> <u></u>		0.015
26. Watershed or subarea T_c or T_t (add T_t in steps 6, 14 δ	∝ ∠ɔ)	hr.).660

Time of Concentration (T_c) or Travel Time (T_t) Worksheet

Date: 07/19/24 Date: Project: Wake Robin Inn Redevelopment By: MCB Location: Salisbury, CT Checked: Circle one: **Present** Developed Watershed: EXWS-20 Circle one: <u>T</u>_c T_{t} Subwatershed: **Sheet flow** (applicable to T_c only) Segment ID A-B WOODS 1. Surface description (Table 3-1) 2. Manning's roughness coeff. for sheet flow, n (Table 3-1) 0.400 3. Flow Length, L (< 300ft) 100.0 4. Two-year 24-hr rainfall, P2 in. 3.08 ft./ft. 5. Land slope, s 0.060 6. $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} (s^{0.4})}$ 0.235 0.235 Shallow concentrated flow (assume hyd. radius = depth of flow) Segment ID B-C C-D D-E WOODS WOODS 7. Surface description BIT 8. Manning's roughness coeff., n 0.100 0.010 0.100 9. Paved or unpaved **UNPVD PVD** UNPVD 10. Depth of flow, d (default values: d=.4 unpaved, d=.2 paved) ft. 0.40 0.20 0.40 11. Flow Length, L ft. 40.0 159.0 52.0 12. Watercourse slope, s ft./ft. 0.100 0.107 0.096 13. Average velocity, $V = \frac{1.49}{n} (d^{\frac{2}{3}}) (s^{\frac{1}{2}})$ 2.56 fps. 16.67 2.51 14. $T_t = \frac{L}{3600*V}$ 0.004 0.003 0.006 0.013 hr. **Channel flow** Segment ID 15. Channel Bottom width, b ft. 16. Horizontal side slope component, z (z horiz:1 vert) ft. 17. Depth of flow, d ft. ft.2 18. Cross sectional flow area, A (assume trapazoidal) 19. Wetted perimeter, Pw ft. 20. Hydraulic Radius, $R = \frac{A}{P_{...}}$ ft. 21. Channel slope, s ft./ft. 22. Manning's roughness coeff., n 23. $V = \frac{1.49}{n} (R^{\frac{1}{3}}) (s^{\frac{1}{2}})$ 24. Flow length, L fps ft. 25. $T_t = \frac{L}{3600 * V}$ 0.000 26. Watershed or subarea T_c or T_t (add T_t in steps 6, 14 & 25) 0.248 hr.

Project: Wake Robin Inn Redevelopment By: MCB Date: 07/19/24 Location: Salisbury, CT Checked: Date: Circle one: Present Developed Watershed: EXWS-30 Circle one: T _c T _t Subwatershed: Sheet flow (applicable to T _c only) Segment ID A-B 1. Surface description (Table 3-1) 2. Manning's roughness coeff. for sheet flow, n (Table 3-1) One of the control of the c	
Location: Salisbury, CT Checked: Date: Circle one: Present Developed Watershed: EXWS-30 Circle one: T _c T _t Subwatershed: Sheet flow (applicable to T _c only) Segment ID A-B 1. Surface description (Table 3-1) 2. Manning's roughness coeff. for sheet flow, n (Table 3-1) One one: Date: D	
Circle one: Present Developed Watershed: EXWS-30 Circle one: T _c T _t Subwatershed: Sheet flow (applicable to T _c only) Segment ID A-B 1. Surface description (Table 3-1) 2. Manning's roughness coeff. for sheet flow, n (Table 3-1) 0.400	
Circle one: T _c T _t Subwatershed: Sheet flow (applicable to T _c only) Segment ID A-B 1. Surface description (Table 3-1) 2. Manning's roughness coeff. for sheet flow, n (Table 3-1) 0.400	
Sheet flow (applicable to T _c only) Segment ID 1. Surface description (Table 3-1) 2. Manning's roughness coeff. for sheet flow, n (Table 3-1) 0.400	
Segment ID 1. Surface description (Table 3-1) 2. Manning's roughness coeff. for sheet flow, n (Table 3-1) O.400	
Segment ID 1. Surface description (Table 3-1) 2. Manning's roughness coeff. for sheet flow, n (Table 3-1) O.400	
 Surface description (Table 3-1) Manning's roughness coeff. for sheet flow, n (Table 3-1) 0.400 	
2. Manning's roughness coeff. for sheet flow, n (Table 3-1)	
· · · · · · · · · · · · · · · · · · ·	
3. Flow Length, L (< 300ft) ft. 114.0	
4. Two-year 24-hr rainfall, P ₂ in. 3.08	
5. Land slope, s ft./ft. 0.080	
$0.007(nL)^{0.8}$	
6. $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} (s^{0.4})}$ hr. $0.233 = 0.233$	
Shallow concentrated flow (assume hyd. radius = depth of flow) Segment ID	
7. Surface description	
8. Manning's roughness coeff., n	
9. Paved or unpaved	
10. Depth of flow, d (default values: d=.4 unpaved, d=.2 paved) ft.	
11. Flow Length, L	
12. Watercourse slope, s	
13. Average velocity, $V = \frac{1.49}{n} (d^{\frac{2}{3}}) (s^{\frac{1}{2}})$ fps.	
14. $T_t = \frac{L}{3600 * V}$ hr.	.000
Channel flow	
Segment ID Segment ID	
15. Channel Bottom width, b	
15. Channel Bottom width, b 16. Horizontal side slope component, z (z horiz:1 vert) 17. Depth of flow, d 18. The state of the state	
15. Channel Bottom width, b 16. Horizontal side slope component, z (z horiz:1 vert) 17. Depth of flow, d 18. Cross sectional flow area, A (assume trapazoidal) 18. Cross sectional flow area, A (assume trapazoidal)	
15. Channel Bottom width, b 16. Horizontal side slope component, z (z horiz:1 vert) 17. Depth of flow, d 18. The state of the state	
15. Channel Bottom width, b 16. Horizontal side slope component, z (z horiz:1 vert) ft. 17. Depth of flow, d 18. Cross sectional flow area, A (assume trapazoidal) ft.² 19. Wetted perimeter, P _w 11. The probability of	
15. Channel Bottom width, b 16. Horizontal side slope component, z (z horiz:1 vert) ft. 17. Depth of flow, d 18. Cross sectional flow area, A (assume trapazoidal) ft. 19. Wetted perimeter, P_w 20. Hydraulic Radius, $R = \frac{A}{P_w}$ ft.	
15. Channel Bottom width, b 16. Horizontal side slope component, z (z horiz:1 vert) 17. Depth of flow, d 18. Cross sectional flow area, A (assume trapazoidal) 19. Wetted perimeter, P_w 20. Hydraulic Radius, $R = \frac{A}{P_w}$ 21. Channel slope, s ft.	
15. Channel Bottom width, b 16. Horizontal side slope component, z (z horiz:1 vert) 17. Depth of flow, d 18. Cross sectional flow area, A (assume trapazoidal) 19. Wetted perimeter, P_w 20. Hydraulic Radius, $R = \frac{A}{P_w}$ 21. Channel slope, s 22. Manning's roughness coeff., n	
15. Channel Bottom width, b 16. Horizontal side slope component, z (z horiz:1 vert) 17. Depth of flow, d 18. Cross sectional flow area, A (assume trapazoidal) 19. Wetted perimeter, P_w 20. Hydraulic Radius, $R = \frac{A}{P_w}$ 21. Channel slope, s ft.	
15. Channel Bottom width, b 16. Horizontal side slope component, z (z horiz:1 vert) 17. Depth of flow, d 18. Cross sectional flow area, A (assume trapazoidal) 19. Wetted perimeter, P_w 10. Hydraulic Radius, $R = \frac{A}{P_w}$ 21. Channel slope, s 22. Manning's roughness coeff., n 23. $V = \frac{1.49}{n} (R^{\frac{2}{3}})(s^{\frac{1}{2}})$ 24. Flow length, L	
15. Channel Bottom width, b 16. Horizontal side slope component, z (z horiz:1 vert) 17. Depth of flow, d 18. Cross sectional flow area, A (assume trapazoidal) 19. Wetted perimeter, P_w 10. Hydraulic Radius, $R = \frac{A}{P_w}$ 20. Hydraulic Radius, $R = \frac{A}{P_w}$ 21. Channel slope, s 22. Manning's roughness coeff., n 23. $V = \frac{1.49}{n} (R^{\frac{7}{3}})(s^{\frac{1}{2}})$ 24. Flow length, L	
15. Channel Bottom width, b 16. Horizontal side slope component, z (z horiz:1 vert) 17. Depth of flow, d 18. Cross sectional flow area, A (assume trapazoidal) 19. Wetted perimeter, P_w 20. Hydraulic Radius, $R = \frac{A}{P_w}$ 21. Channel slope, s 22. Manning's roughness coeff., n 23. $V = \frac{1.49}{n} (R^{\frac{2}{3}}) (s^{\frac{1}{2}})$ 24. Flow length, L 25. $T_t = \frac{L}{3600*V}$.000

Project: Wake Robin Inn Redevelopment B	y: MCB	Date: Rev. 8/29/24
Location: Salisbury, CT Checket		Date:
	d: PRWS-10	
Circle one: \underline{T}_c T_t Subwatershe	ed:	
		
Sheet flow (applicable to T _c only)		
Segment II		
1. Surface description (Table 3-1)	WOODS	
2. Manning's roughness coeff. for sheet flow, n (Table 3-1)	0.400	
9 , (,	ft. 40.0	
• •	n. 3.08	
5. Land slope, s ft./	ft. 0.038	
6. $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} (s^{0.4})}$		
$P_2^{0.5}(s^{0.4})$	nr. 0.136 0.136	
Obellan accommended flam		
Shallow concentrated flow (assume hyd. radius = depth of flow)		
7. Surface description	′ ├──┤ ├──┤ ├	
Surface description Manning's roughness coeff., n		
9. Paved or unpaved		-
10. Depth of flow, d (default values: d=.4 unpaved, d=.2 paved) ft.		
	ft	
12. Watercourse slope, s ft./		
13. Average velocity, $V = \frac{1.49}{n} (d^{\frac{2}{3}}) (s^{\frac{1}{2}})$	s.	
14. $T_t = \frac{L}{3600*V}$		
$\frac{14. T_t}{3600 * V}$	nr	0.000
Observed floor		
<u>Channel flow</u> Segment II		
J	, ft.	
16. Horizontal side slope component, z (z horiz:1 vert) ft.	"· -	
	ft	
18. Cross sectional flow area, A (assume trapazoidal) ft. ²	'`` 	
	ft	
	"·	——
20. Hydraulic Radius, $R = \frac{A}{P_{w}}$	ft.	
21. Channel slope, s P_w		
22. Manning's roughness coeff., n	'' 	
		——
23. $V = \frac{1.49}{n} (R^{\frac{2}{3}}) (s^{\frac{1}{2}})$		
	ft.	——
•		
25. $T_t = \frac{L}{3600 * V}$	nr.	= 0.000
26. Watershed or subarea T _c or T _t (add T _t in steps 6, 14 & 25)		0.136
20. Watershed of Subarea 10 of 1t (add 1t ill steps 0, 14 & 20)		hr. 0.136

Project: Wake Robin Inn Redevelopment By: MCB Date: Location: Salisbury, CT Checked: Date: Circle one: Present Developed Watershed: PRWS-11	Rev. 8/30/24
Circle one: T _c T _t Subwatershed:	
Office offe. 1t Subwatershed.	
Sheet flow (applicable to T _c only) Segment ID A-B	
1. Surface description (Table 3-1) WOODS	
2. Manning's roughness coeff. for sheet flow, n (Table 3-1) 0.400	
3. Flow Length, L (< 300ft) ft. 100.0	
4. Two-year 24-hr rainfall, P ₂ in. 3.08	
5. Land slope, s ft./ft. 0.035	
6. $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} (s^{0.4})}$ hr. 0.292	
Shallow concentrated flow (assume hyd. radius = depth of flow)	1
Segment ID B-C	
7. Surface description 8. Manning's roughness coeff., n	
9. Paved or unpaved UNPVD	1
10. Depth of flow, d (default values: d=.4 unpaved, d=.2 paved) ft. 0.40	1
11. Flow Length, L ft. 1176.0	1 -
12. Watercourse slope, s ft./ft. 0.013	1
13. Average velocity, $V = \frac{1.49}{n} (d^{\frac{2}{3}}) (s^{\frac{1}{2}})$ fps. 0.92	
14. $T_t = \frac{L}{3600 * V}$ hr. 0.354	= 0.354
Channel flow	
Segment ID C-D	
15. Channel Bottom width, b	
16. Horizontal side slope component, z (z horiz:1 vert) ft. 4.00	<u> </u>
17. Depth of flow, d ft. 1.00	
18. Cross sectional flow area, A (assume trapazoidal) ft. ² 10.00	
19. Wetted perimeter, P _w ft. 14.25	-
20. Hydraulic Radius, $R = \frac{A}{P_w}$ ft. 0.70	
21. Channel slope, s ft./ft. 0.057	
22. Manning's roughness coeff., n	1 ├── ┤
23. $V = \frac{1.49}{n} (R^{\frac{2}{3}}) (s^{\frac{1}{2}})$ fps. 11.71	
24. Flow length, L ft. 545.0	
25. $T_t = \frac{L}{3600 * V}$ hr. 0.013 +	= 0.013
26. Watershed or subarea T_c or T_t (add T_t in steps 6, 14 & 25)	hr. 0.659

Time of Concentration (T_c) or Travel Time (T_t) Worksheet

Date: 07/19/24 Date: Project: Wake Robin Inn Redevelopment By: MCB Location: Salisbury, CT Checked: Circle one: Present Developed Watershed: PRWS-12 Circle one: <u>T</u>_c T_{t} Subwatershed: **Sheet flow** (applicable to T_c only) Segment ID A-B GRASS 1. Surface description (Table 3-1) 2. Manning's roughness coeff. for sheet flow, n (Table 3-1) 0.240 3. Flow Length, L (< 300ft) 50.0 4. Two-year 24-hr rainfall, P2 in. 3.08 5. Land slope, s ft./ft. 0.100 6. $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} (s^{0.4})}$ 0.073 0.073 Shallow concentrated flow (assume hyd. radius = depth of flow) Segment ID B-C 7. Surface description BIT 8. Manning's roughness coeff., n 0.010 9. Paved or unpaved **PVD** 10. Depth of flow, d (default values: d=.4 unpaved, d=.2 paved) ft. 0.20 11. Flow Length, L ft. 182.0 12. Watercourse slope, s ft./ft. 0.027 13. Average velocity, $V = \frac{1.49}{n} (d^{\frac{2}{3}}) (s^{\frac{1}{2}})$ fps. 8.37 14. $T_t = \frac{L}{3600*V}$ 0.006 0.006 hr. **Channel flow** Segment ID C-D 15. Channel Bottom width, b ft. 15" HDPE 16. Horizontal side slope component, z (z horiz:1 vert) ft. **FULL** 17. Depth of flow, d ft.² 18. Cross sectional flow area, A (assume trapazoidal) 1.23 19. Wetted perimeter, Pw ft. 3.93 20. Hydraulic Radius, $R = \frac{A}{P_{...}}$ ft. 0.31 21. Channel slope, s ft./ft. 0.01 22. Manning's roughness coeff., n 0.012 23. $V = \frac{1.49}{n} (R^{\frac{1}{3}}) (s^{\frac{1}{2}})$ 24. Flow length, L fps. 5.72 224.0 25. $T_t = \frac{L}{3600 * V}$ 0.011 0.011 26. Watershed or subarea T_c or T_t (add T_t in steps 6, 14 & 25)

Min Tc = 0.1 hr

hr.

Project: Wake Robin Inn Redevelopment	Bv:	MCB	Date:	Rev. 8/29/24	
Location: Salisbury, CT	Checked:		Date:		
Circle one: Present <u>Developed</u>	Watershed:	PRWS-20	-		
	ubwatershed:				
					
Sheet flow (applicable to T _c only)	0				
	Segment ID	A-B			
Surface description (Table 3-1) Manning's roughness souff for sheet flow in (Table 3-1)	blo 2 1)	WOODS			
2. Manning's roughness coeff. for sheet flow, n (Tal	· .	0.400			
3. Flow Length, L (< 300ft)	ft.	100.0			
4. Two-year 24-hr rainfall, P ₂	in.	3.08			
5. Land slope, s	ft./ft.	0.060			
6. $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} (s^{0.4})}$		_			
$P_2^{0.5}(s^{0.4})$	hr.	0.235 0.235			
Shallow concentrated flow (o of flave)				
Shallow concentrated flow (assume hyd. radius = depth		B-C			
	Segment ID				
7. Surface description		0.080			
8. Manning's roughness coeff., n9. Paved or unpaved			\vdash		
 Paved of unpaved Depth of flow, d (default values: d=.4 unpaved, d=.2 pa 	ved) ft.	0.40	\vdash		
11. Flow Length, L	rvea) 11. ft.	240.0	\vdash		
12. Watercourse slope, s	ft./ft.				
	11./11.	0.100			
13. Average velocity, $V = \frac{1.49}{n} (d^{\frac{2}{3}}) (s^{\frac{1}{2}})$	fps.	3.20			
11					
14. $T_t = \frac{L}{3600*V}$	hr.	0.021 +		-	0.021
0					
Channel flow	Coamont ID				
	Segment ID	E-F			
15. Channel Bottom width, b16. Horizontal side slope component, z (z horiz:1 ve		15" HDPE			
17. Depth of flow, d	ft.	FULL FULL			
18. Cross sectional flow area, A (assume trapazoid		$\overline{}$			
· · · · · · · · · · · · · · · · · · ·	,	1.23			
19. Wetted perimeter, P _w	ft.	3.93			
20. Hydraulic Radius, $R = \frac{A}{P_w}$	ft.	0.31			
21. Channel slope, s	ft./ft.				
22. Manning's roughness coeff., n	10,10	0.012	\vdash		
			\vdash		
23. $V = \frac{1.49}{n} (R^{\frac{2}{3}}) (s^{\frac{1}{2}})$	fps.	11.45			
n 24. Flow length, L	ft.	385.0	\vdash		
<u> </u>					
25. $T_t = \frac{L}{3600 * V}$	hr.	0.009		=	0.009
26. Watershed or subarea T_c or T_t (add T_t in steps 6	3 14 & 25)				0.265
25. Tratoronou or outsured in the or it land it in steps	o, \ \ 20 <i>j</i>			hr.	0.200

Project: Wake Robin Inn Redevelopment	Bv.	MCB	Date:	07/19/24	
Location: Salisbury, CT	Checked:		_	01710721	
Circle one: Present <u>Developed</u>	— Watershed:		-		
Circle one: \underline{T}_c T_t	Subwatershed:	:			
					
$\underline{\textbf{Sheet flow}}$ (applicable to T_c only)					
4 0 (Segment ID	A-B			
1. Surface description (Table 3-1)	T. I. I. O. 4)	GRASS			
2. Manning's roughness coeff. for sheet flow, n (0.240			
3. Flow Length, L (< 300ft)	ft.				
4. Two-year 24-hr rainfall, P ₂	in.				
5. Land slope, s	ft./ft.	0.060			
6. $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} (s^{0.4})}$					
0. $I_t = \frac{1}{P_2^{0.5}(s^{0.4})}$	hr.	. 0.090			
2 ()					
Shallow concentrated flow (assume hyd. radius = de					
- 0 () 1 ()	Segment ID	B-C			
7. Surface description		GRASS			
8. Manning's roughness coeff., n		0.080			
9. Paved or unpaved		UNPVD			
10. Depth of flow, d (default values: d=.4 unpaved, d=.2		0.40			
11. Flow Length, L	ft.				
12. Watercourse slope, s	ft./ft.	0.097			
13. Average velocity, $V = \frac{1.49}{n} (d^{\frac{2}{3}}) (s^{\frac{1}{2}})$	fps.	3.15			
11	•				
14. $T_t = \frac{L}{3600 * V}$	hr.	0.011 +		=	0.011
<u>Channel flow</u>	_				
	Segment ID	C-D			
15. Channel Bottom width, b		15" HDPE			
16. Horizontal side slope component, z (z horiz:1	,				
17. Depth of flow, d	ft.				
18. Cross sectional flow area, A (assume trapazo	oidal) ft.²	1.23			
19. Wetted perimeter, P _w	ft.	. 3.93			
20. Hydraulic Radius, $R = \frac{A}{P_{w}}$	ft.	0.31			
21. Channel slope, s	ft./ft.			\vdash	
22. Manning's roughness coeff., n	11./11.	0.012			
		0.012			
23. $V = \frac{1.49}{n} (R^{2/3})(s^{1/2})$	fps.	5.72			
24. Flow length, L	ft.				
	11.				
25. $T_t = \frac{L}{3600 * V}$	hr.	. 0.013		=	0.013
3000 /					
26. Watershed or subarea T_c or T_t (add T_t in step	05 U, 14 & 20)			hr.	0.114

Time of Concentration (T_c) or Travel Time (T_t) Worksheet

Date: <u>07/19/24</u> Project: Wake Robin Inn Redevelopment By: MCB Location: Salisbury, CT Checked: Date: Circle one: Present Developed Watershed: PRWS-22 Circle one: <u>T</u>_c T_{t} Subwatershed:

Sheet flow (applicable to T_c only)

- 1. Surface description (Table 3-1)
- 2. Manning's roughness coeff. for sheet flow, n (T.
- 3. Flow Length, L (< 300ft)
- 4. Two-year 24-hr rainfall, P2
- 5. Land slope, s
- 6. $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} (s^{0.4})}$

Segment ID	A-B			
	GRASS			
able 3-1)	0.240			
ft.	57.0	1		
in.	3.08			
ft./ft.	0.158	1		
hr.	0.068	=	0.068	

ft./

Segment ID

Shallow concentrated flow (assume hyd. radius = depth of flow)

				Segment I
 _				

- 7. Surface description
- 8. Manning's roughness coeff., n
- 9. Paved or unpaved
- 10. Depth of flow, d (default values: d=.4 unpaved, d=.2 paved) ft.
- 11. Flow Length, L
- 12. Watercourse slope, s
- 13. Average velocity, $V = \frac{1.49}{n} (d^{\frac{2}{3}}) (s^{\frac{1}{2}})$
- 14. $T_t = \frac{L}{3600*V}$

ן טוז	В-		מ-ט				
	BIT		GRASS				
	0.010		0.080				
	PVD		UNPVD				
	0.20		0.40				
ft.	38.0	Ì	55.0				
ft./ft.	0.053		0.055				
fps.	11.73		2.37				
hr.	0.001	+	0.006			=	0.007

Channel flow

- 15. Channel Bottom width, b 16. Horizontal side slope component, z (z horiz:1 vert) ft.
- 17. Depth of flow, d
- ft.² 18. Cross sectional flow area, A (assume trapazoidal)
- 19. Wetted perimeter, Pw
- 20. Hydraulic Radius, $R = \frac{A}{P_{...}}$
- 21. Channel slope, s
- 22. Manning's roughness coeff., n
- 23. $V = \frac{1.49}{n} (R^{\frac{1}{3}}) (s^{\frac{1}{2}})$ 24. Flow length, L

25.
$$T_t = \frac{L}{3600 * V}$$

5.72 205.0

D-E

FULL

1.23

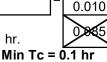
3.93

0.31

0.01

0.012

ft.


ft.

ft./ft.

ft. 15" HDPE

fps. 0.010

			ĺ.
			=
		hr.	

26. Watershed or subarea T_c or T_t (add T_t in steps 6, 14 & 25)

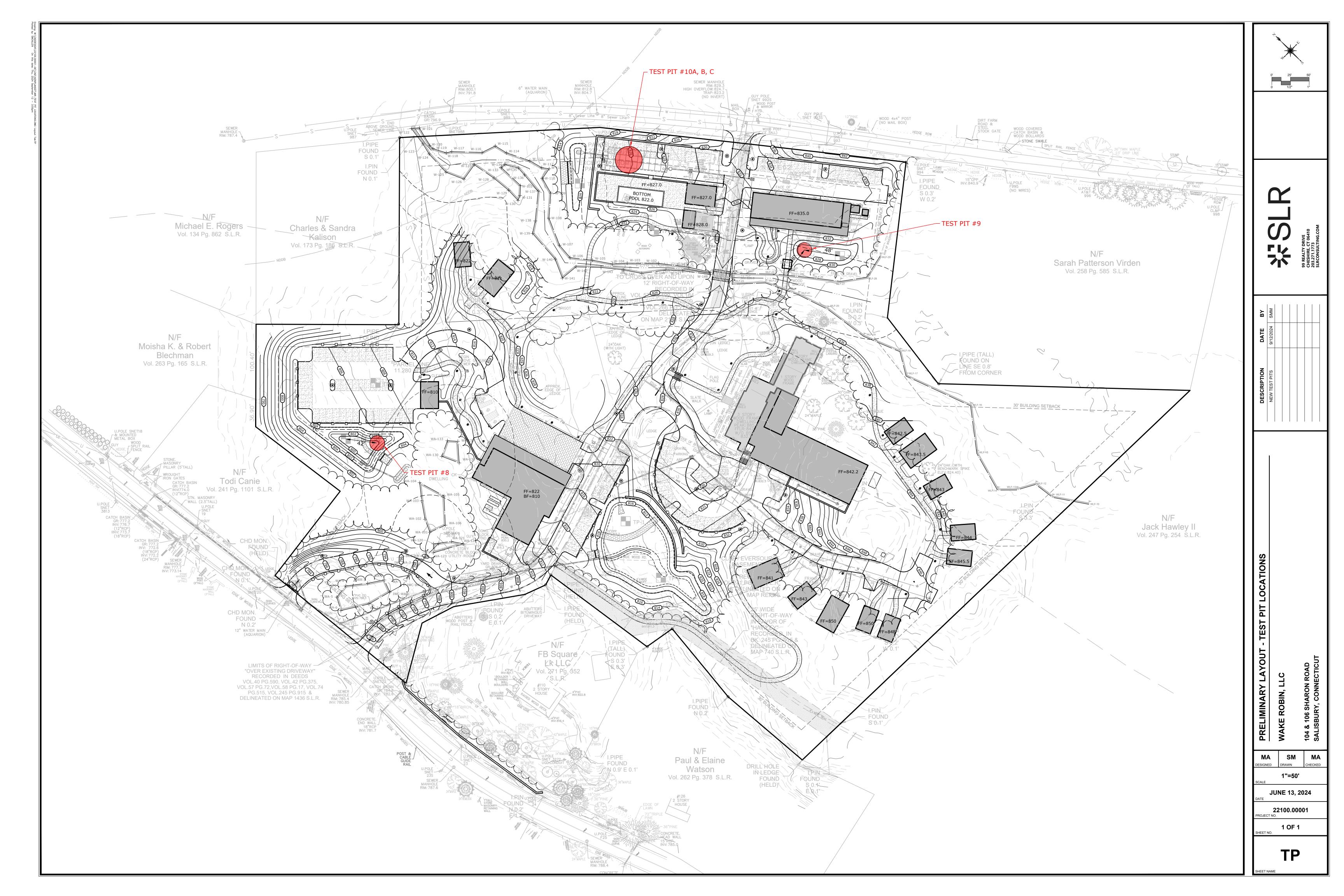
Draiget: Wake Debin Inn Dedevelenment - Dry MCD - Detec	07/40/04	
· — · · — · · — ·	07/19/24	_
Circle one: Present <u>Developed</u> Watershed: PRWS-30		_
		-
Circle one: T _t Subwatershed:		_
Sheet flow (applicable to T _c only)		
Segment ID A-B		
1. Surface description (Table 3-1) WOODS		
2. Manning's roughness coeff. for sheet flow, n (Table 3-1) 0.400		
3. Flow Length, L (< 300ft) ft. 100.0		
4. Two-year 24-hr rainfall, P ₂ in. 3.08		
5. Land slope, s ft./ft. 0.070		
·		
6. $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} (s^{0.4})}$ hr. $0.221 = 0.221$		
$P_2^{0.5}(s^{0.4})$ hr. 0.221 0.221		
Shallow concentrated flow (assume hyd. radius = depth of flow)		
Segment ID B-C		
7. Surface description WOODS		
8. Manning's roughness coeff., n		
9. Paved or unpaved UNPVD		
10. Depth of flow, d (default values: d=.4 unpaved, d=.2 paved) ft. 0.40		
11. Flow Length, L ft. 17.0		
12. Watercourse slope, s ft./ft. 0.070		
13. Average velocity, $V = \frac{1.49}{n} (d^{\frac{2}{3}}) (s^{\frac{1}{2}})$ fps. 2.14		
14. $T_t = \frac{L}{3600 * V}$ hr. 0.002	=	
hr. 0.002 hr. 0.002		0.002
Channel flow		
Segment ID		
15. Channel Bottom width, b		
16. Horizontal side slope component, z (z horiz:1 vert) ft.		
17. Depth of flow, d		
18. Cross sectional flow area, A (assume trapazoidal) ft. ²		
19. Wetted perimeter, P _w ft.		
20. Hydraulic Radius, $R = \frac{A}{P_w}$ ft.		
21. Channel slope, s ft./ft.		
22. Manning's roughness coeff., n		
23. $V = \frac{1.49}{n} (R^{\frac{2}{3}})(s^{\frac{1}{2}})$ fps.		
24. Flow length, L		
25. $T_t = \frac{L}{3600 * V}$ hr.	=	0.000
26. Watershed or subarea T _c or T _t (add T _t in steps 6, 14 & 25)	hr.	0.223

Wake Robin Soil Samples Falling Head Permeability Test Results June 24, 2024

Sample	K (in/hr)	K (ft/day)	Sample Depth
SLR-TP-1	10.63	21.26	32"
SLR-TP-2	14.87	29.74	60"
SLR-TP-3	26.42	52.84	32"
SLR-TP-5	1.71	3.41	26"
SLR-TP-7	13.95	27.89	18"

DET 210:

(10.63 + 14.87) / 2 = 12.75 in/hr 12.75 in/hr * 50% = 6.38 in/hr Wake Robin Soil Samples Falling Head Permeability Test Results September 12, 2024


Sample	K (in/hr)	K (ft/day)	Sample Depth
8	3.16	6.33	24"
9	0.34	0.68	22"
10A	0.12	0.24	26"
10B	0.65	1.30	32"
10C	0.26	0.52	31"

UG 120:

(0.12 + 0.65 + 0.26) / 3 = 0.343 in/hr0.343 * 50% = 0.172 in/hr

DET 220:

(13.95 + 3.16) / 2 = 8.56 in/hr8.56 in/hr * 50% = 4.28 in/hr

NOAA Atlas 14, Volume 10, Version 3 Location name: Lakeville, Connecticut, USA* Latitude: 41.958°, Longitude: -73.4354° Elevation: 831 ft**

source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

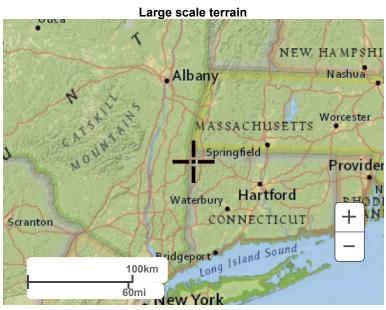
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

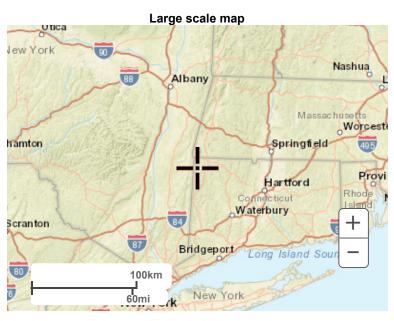
NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

	-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹ Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.334 (0.255-0.437)	0.396 (0.303-0.518)	0.497 (0.379-0.653)	0.581 (0.441-0.768)	0.697 (0.513-0.960)	0.785 (0.567-1.10)	0.876 (0.614-1.27)	0.973 (0.652-1.45)	1.11 (0.717-1.72)	1.21 (0.769-1.92)
10-min	0.473 (0.362-0.618)	0.561 (0.429-0.734)	0.705 (0.538-0.926)	0.824 (0.624-1.09)	0.988 (0.726-1.36)	1.11 (0.802-1.56)	1.24 (0.870-1.80)	1.38 (0.924-2.06)	1.57 (1.02-2.43)	1.72 (1.09-2.72)
15-min	0.556 (0.426-0.728)	0.660 (0.504-0.864)	0.829 (0.631-1.09)	0.969 (0.734-1.28)	1.16 (0.854-1.60)	1.31 (0.943-1.84)	1.46 (1.02-2.12)	1.62 (1.09-2.42)	1.85 (1.20-2.86)	2.02 (1.28-3.20)
30-min	0.763 (0.584-0.999)	0.906 (0.693-1.19)	1.14 (0.869-1.50)	1.33 (1.01-1.76)	1.60 (1.18-2.21)	1.80 (1.30-2.54)	2.01 (1.42-2.94)	2.24 (1.50-3.36)	2.57 (1.66-3.98)	2.84 (1.80-4.48)
60-min	0.971 (0.743-1.27)	1.15 (0.882-1.51)	1.45 (1.11-1.91)	1.70 (1.29-2.25)	2.04 (1.50-2.82)	2.30 (1.66-3.24)	2.57 (1.81-3.75)	2.87 (1.92-4.29)	3.30 (2.13-5.11)	3.65 (2.31-5.77)
2-hr	1.28 (0.981-1.66)	1.48 (1.14-1.93)	1.82 (1.39-2.37)	2.09 (1.59-2.75)	2.47 (1.83-3.39)	2.76 (2.00-3.86)	3.06 (2.15-4.43)	3.38 (2.28-5.03)	3.82 (2.48-5.90)	4.17 (2.65-6.58)
3-hr	1.47 (1.13-1.90)	1.70 (1.31-2.21)	2.08 (1.60-2.71)	2.39 (1.83-3.14)	2.83 (2.09-3.86)	3.16 (2.29-4.40)	3.49 (2.47-5.05)	3.86 (2.60-5.74)	4.38 (2.85-6.74)	4.79 (3.05-7.54)
6-hr	1.80 (1.39-2.32)	2.12 (1.64-2.75)	2.66 (2.05-3.46)	3.11 (2.39-4.06)	3.73 (2.78-5.10)	4.18 (3.07-5.86)	4.68 (3.35-6.83)	5.26 (3.56-7.81)	6.14 (4.01-9.44)	6.89 (4.40-10.8)
12-hr	2.10 (1.64-2.70)	2.60 (2.02-3.35)	3.42 (2.65-4.42)	4.11 (3.16-5.33)	5.04 (3.80-6.93)	5.73 (4.25-8.08)	6.49 (4.73-9.61)	7.48 (5.06-11.1)	9.08 (5.93-13.9)	10.5 (6.71-16.4)
24-hr	2.41 (1.88-3.08)	3.08 (2.41-3.95)	4.19 (3.26-5.39)	5.11 (3.95-6.61)	6.37 (4.83-8.76)	7.28 (5.45-10.3)	8.32 (6.14-12.4)	9.71 (6.59-14.3)	12.0 (7.87-18.4)	14.1 (9.06-22.0)
2-day	2.75 (2.16-3.50)	3.54 (2.78-4.51)	4.83 (3.78-6.18)	5.91 (4.59-7.60)	7.38 (5.62-10.1)	8.45 (6.35-11.9)	9.66 (7.16-14.4)	11.3 (7.69-16.6)	14.0 (9.21-21.4)	16.5 (10.6-25.6)
3-day	3.00 (2.36-3.81)	3.85 (3.03-4.90)	5.24 (4.11-6.68)	6.39 (4.98-8.20)	7.98 (6.09-10.9)	9.12 (6.87-12.8)	10.4 (7.74-15.5)	12.2 (8.31-17.9)	15.1 (9.95-23.0)	17.8 (11.5-27.6)
4-day	3.22 (2.54-4.08)	4.12 (3.25-5.23)	5.58 (4.38-7.11)	6.80 (5.31-8.71)	8.47 (6.48-11.5)	9.68 (7.30-13.6)	11.0 (8.21-16.3)	12.9 (8.81-18.9)	16.0 (10.5-24.3)	18.8 (12.1-29.0)
7-day	3.84 (3.04-4.85)	4.84 (3.83-6.11)	6.46 (5.10-8.20)	7.82 (6.13-9.97)	9.68 (7.42-13.1)	11.0 (8.33-15.4)	12.5 (9.32-18.4)	14.6 (9.98-21.3)	17.9 (11.8-27.1)	20.8 (13.5-32.2)
10-day	4.48 (3.55-5.63)	5.52 (4.38-6.96)	7.24 (5.72-9.15)	8.66 (6.80-11.0)	10.6 (8.14-14.3)	12.0 (9.09-16.7)	13.6 (10.1-19.9)	15.7 (10.8-22.9)	19.1 (12.6-28.8)	22.0 (14.3-34.0)
20-day	6.52 (5.20-8.16)	7.61 (6.06-9.54)	9.40 (7.46-11.8)	10.9 (8.59-13.8)	12.9 (9.92-17.2)	14.4 (10.9-19.7)	16.1 (11.8-23.0)	18.1 (12.5-26.2)	21.2 (14.1-32.0)	23.9 (15.6-36.8)
30-day	8.23 (6.58-10.3)	9.34 (7.46-11.7)	11.2 (8.89-14.0)	12.7 (10.0-16.0)	14.8 (11.3-19.5)	16.3 (12.3-22.1)	18.0 (13.2-25.4)	19.9 (13.8-28.8)	22.7 (15.2-34.1)	25.1 (16.4-38.5)
45-day	10.3 (8.29-12.9)	11.5 (9.21-14.3)	13.4 (10.7-16.8)	15.0 (11.9-18.9)	17.2 (13.2-22.5)	18.8 (14.2-25.2)	20.5 (14.9-28.5)	22.3 (15.5-32.1)	24.7 (16.6-37.0)	26.6 (17.4-40.8)
60-day	12.1 (9.70-15.0)	13.3 (10.7-16.6)	15.3 (12.2-19.1)	17.0 (13.5-21.3)	19.3 (14.8-25.1)	21.1	22.8	24.5	26.6 (17.8-39.6)	28.0 (18.3-42.9)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

Large scale aerial

Appendix G Hydrologic Analysis-Computer Model Results

Wake Robin Inn Redevelopment

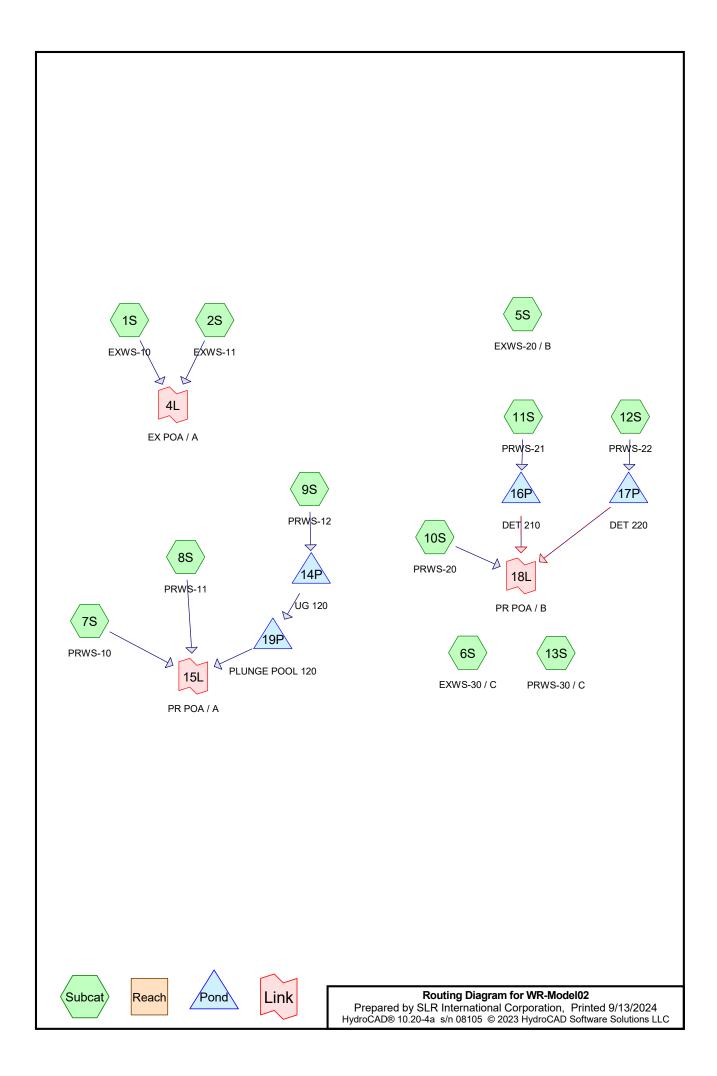
104 & 106 Sharon Road, Salisbury, Connecticut

Drainage Report

Prepared for: Aradev LLC 352 Atlantic Avenue, Unit 2 Brooklyn, NY 11217

SLR Project No.: 141.22100.00001

July 19, 2024


Revised August 1, 2024; September 13, 2024

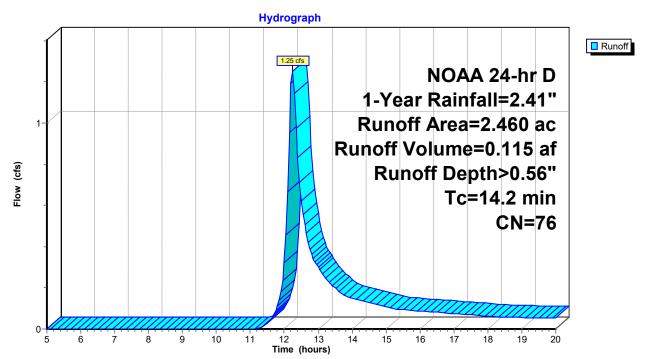
Hydrographs Peak Flowrate Summary (cfs) Existing vs. Proposed

Ctown Front	1	yr	2	yr	5,	yr	10	10yr		Syr	50yr		100	Oyr
Storm Event	Exist	Prop												
Point of Analysis A	4.2	3.8	8.1	7.3	15.5	14.6	22.3	21.3	32.2	30.5	39.6	37.5	48.1	45.5
UG 120 W.S. Elev. (ft.) Inside Top of Chamber Elev. = 822.3	-	819.8	-	820.2	-	821.2	-	821.6	-	821.8	-	821.9	-	822.1
Plunge Pool 120 W.S. Elev. (ft.) Top of Berm Elev. = 816.0	-	815.0	-	815.0	-	815.0	-	815.1	-	815.2	-	815.2	-	815.2
Point of Analysis B	3.9	2.5	6.1	3.9	10.1	6.8	13.5	11.8	18.2	15.9	21.6	19.3	25.5	22.6
DET 210 W.S. Elev. (ft.) Top of Berm Elev. = 818.0	-	815.2	-	815.4	-	815.7	-	816.0	-	816.4	-	816.7	-	816.9
DET 220 W.S. Elev. (ft.) Top of Berm Elev. = 804.0	-	801.6	-	802.2	-	802.6	-	802.8	-	802.8	-	802.9	-	803.0
Point of Analysis C	0.9	0.9	1.6	1.5	2.9	2.5	4.0	3.4	5.6	4.7	6.8	5.7	8.1	6.7

Study Area	Description
A	Wells Hill Road
В	Sharon Road Storm Drainage
C	Sharon Road and Southern Properties

Page 2

Summary for Subcatchment 1S: EXWS-10


Runoff = 1.25 cfs @ 12.24 hrs, Volume= 0.115 af, Depth> 0.56"

Routed to Link 4L: EX POA / A

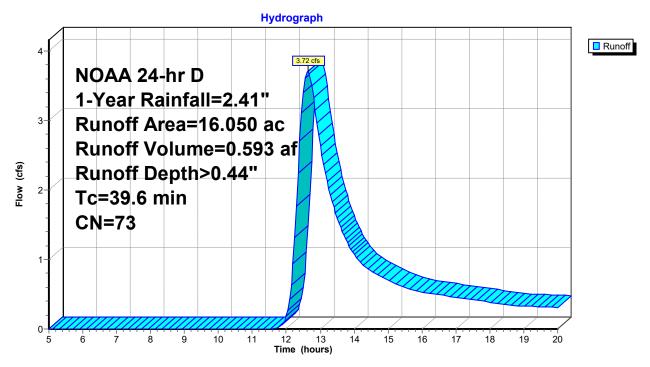
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 1-Year Rainfall=2.41"

	Area	(ac)	CN	Desc	cription		
*	2.	460	76				
	2.460 100.00% Pervious Area				00% Pervi	ous Area	
		Leng			•		Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	14.2						Direct Entry,

Subcatchment 1S: EXWS-10

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Summary for Subcatchment 2S: EXWS-11

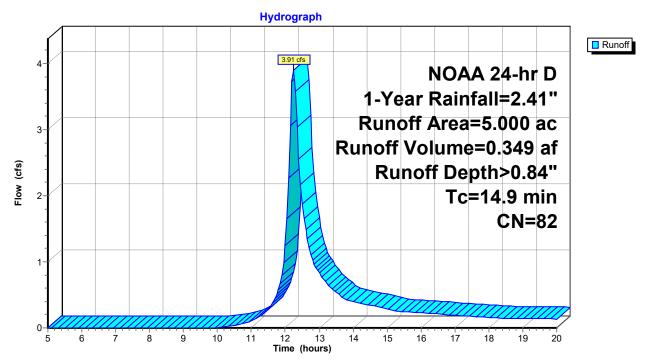

Runoff = 3.72 cfs @ 12.63 hrs, Volume= 0.593 af, Depth> 0.44"

Routed to Link 4L: EX POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 1-Year Rainfall=2.41"

	Area	(ac)	CN	Desc	cription		
*	16.	050	73				
	16.050 100.0				00% Pervi	ous Area	
	Тс	_		•	•		Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	39.6						Direct Entry,

Subcatchment 2S: EXWS-11


Summary for Subcatchment 5S: EXWS-20 / B

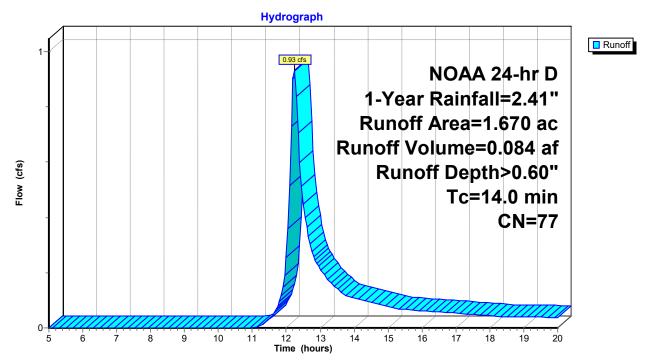
Runoff = 3.91 cfs @ 12.24 hrs, Volume= 0.349 af, Depth> 0.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 1-Year Rainfall=2.41"

_	Area	(ac)	CN	Desc	cription		
*	5.	000	82				
	5.000 100.00% Pervious Area				00% Pervi	ous Area	
	Тс	Leng	th S	Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	14.9						Direct Entry,

Subcatchment 5S: EXWS-20 / B

Page 5


Summary for Subcatchment 6S: EXWS-30 / C

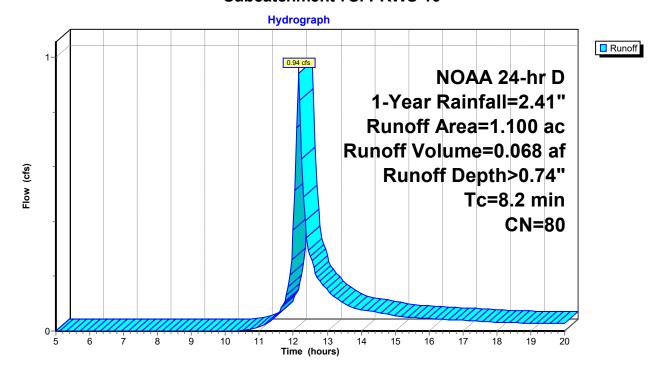
Runoff 0.93 cfs @ 12.24 hrs, Volume= 0.084 af, Depth> 0.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 1-Year Rainfall=2.41"

_	Area	(ac)	CN	Desc	cription		
*	1.	670	77				
	1.670 100.00% Pervious Area					ous Area	
	Тс	Leng	:h \$	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	14.0						Direct Entry,

Subcatchment 6S: EXWS-30 / C

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC


Runoff = 0.94 cfs @ 12.16 hrs, Volume= 0.068 af, Depth> 0.74" Routed to Link 15L : PR POA / A

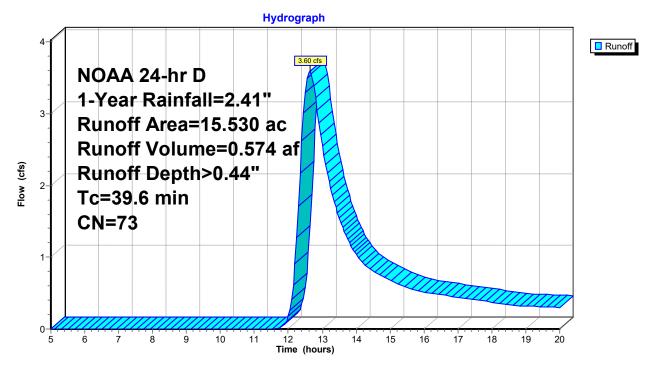
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 1-Year Rainfall=2.41"

	Area	(ac)	CN	Desc	cription		
*	1.	100	80				
	1.	100		100.	00% Pervi	ous Area	
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	8.2						Direct Entry,

Summary for Subcatchment 7S: PRWS-10

Subcatchment 7S: PRWS-10

Summary for Subcatchment 8S: PRWS-11


Runoff = 3.60 cfs @ 12.63 hrs, Volume= 0.574 af, Depth> 0.44"

Routed to Link 15L: PR POA / A

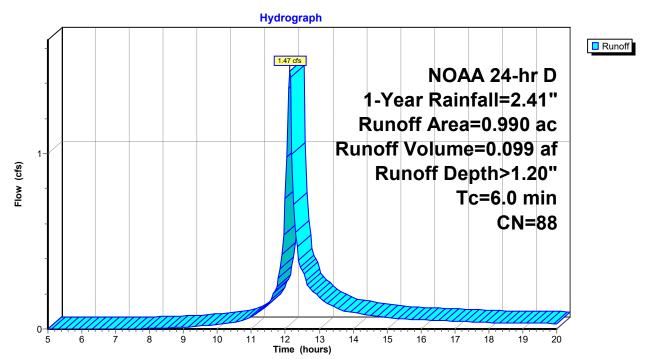
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 1-Year Rainfall=2.41"

	Area	(ac)	CN	Desc	cription		
*	15.	530	73				
	15.	530		100.	00% Pervi	ous Area	
	Тс	_			,	. ,	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	39.6						Direct Entry,

Subcatchment 8S: PRWS-11

Page 8

Summary for Subcatchment 9S: PRWS-12


Runoff = 1.47 cfs @ 12.13 hrs, Volume= 0.099 af, Depth> 1.20"

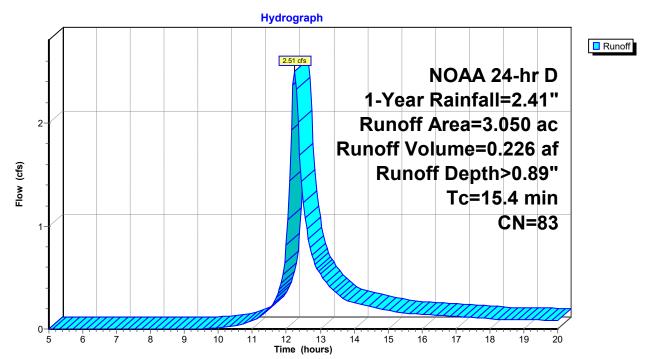
Routed to Pond 14P: UG 120

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 1-Year Rainfall=2.41"

	Area	(ac)	CN	Desc	cription		
*	0.	990	88				
,	0.	990		100.	00% Pervi	ous Area	
	Тс	Lengt	h S	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry,

Subcatchment 9S: PRWS-12

Summary for Subcatchment 10S: PRWS-20


Runoff = 2.51 cfs @ 12.25 hrs, Volume= 0.226 af, Depth> 0.89"

Routed to Link 18L: PR POA / B

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 1-Year Rainfall=2.41"

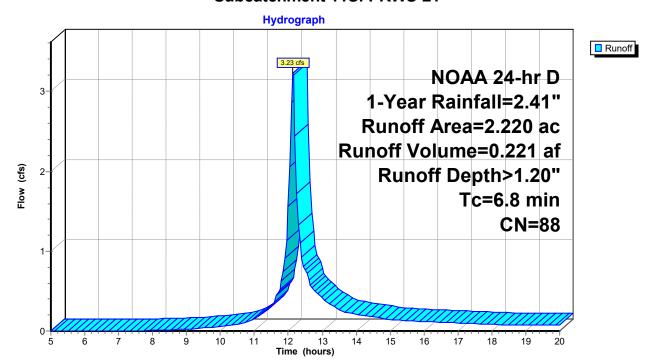
	Area	(ac)	CN	Desc	cription		
*	3.	050	83				
	3.	050		100.	00% Pervi	ous Area	
	Tc	_			•		Description
_	(min)	(fee	:t)	(ft/ft)	(ft/sec)	(cfs)	
	15.4						Direct Entry,

Subcatchment 10S: PRWS-20

Printed 9/13/2024

Page 10

Summary for Subcatchment 11S: PRWS-21


Runoff = 3.23 cfs @ 12.14 hrs, Volume= 0.221 af, Depth> 1.20"

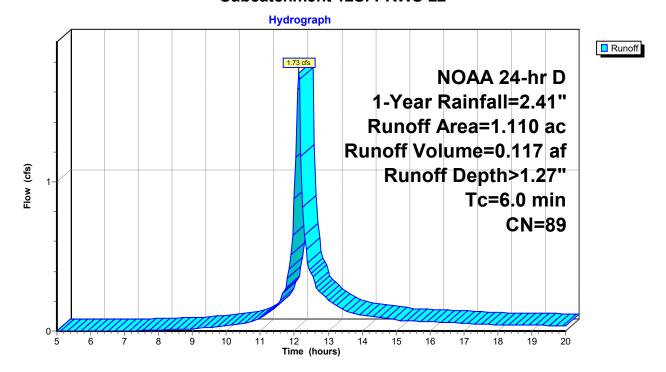
Routed to Pond 16P: DET 210

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 1-Year Rainfall=2.41"

	Area	(ac)	CN	Desc	cription		
*	2.	220	88				
	2.	220		100.	00% Pervi	ous Area	
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	6.8						Direct Entry,

Subcatchment 11S: PRWS-21

Summary for Subcatchment 12S: PRWS-22

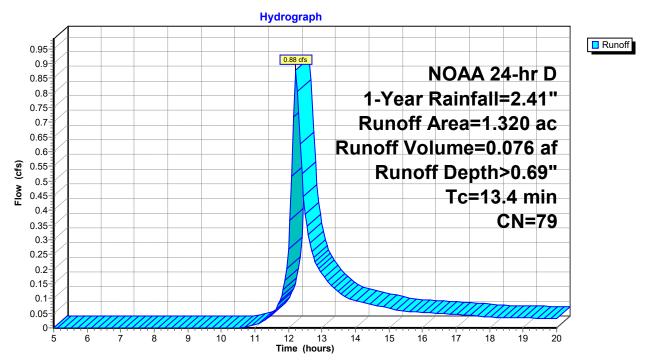

Runoff = 1.73 cfs @ 12.13 hrs, Volume= 0.117 af, Depth> 1.27" Routed to Pond 17P : DET 220

Rouled to Folid 17F. DE1 220

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 1-Year Rainfall=2.41"

	Area	(ac)	CN	Desc	cription		
*	1.	110	89				
	1.	110		100.	00% Pervi	ous Area	
	Тс	_		•	•		Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry,

Subcatchment 12S: PRWS-22


Summary for Subcatchment 13S: PRWS-30 / C

Runoff = 0.88 cfs @ 12.22 hrs, Volume= 0.076 af, Depth> 0.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 1-Year Rainfall=2.41"

_	Area	(ac)	CN	Desc	cription		
*	1.	.320	79				
	1.	.320		100.	00% Pervi	ous Area	
	Тс	Leng			•	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	13.4						Direct Entry,

Subcatchment 13S: PRWS-30 / C

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 13

Summary for Pond 14P: UG 120

Inflow Area =	0.990 ac,	0.00% Impervious, Inflow D	Depth > 1.20" for 1-Year event
Inflow =	1.47 cfs @	12.13 hrs, Volume=	0.099 af
Outflow =	0.15 cfs @	13.19 hrs, Volume=	0.048 af, Atten= 90%, Lag= 63.8 min
Discarded =	0.01 cfs @	10.15 hrs, Volume=	0.007 af
Primary =	0.14 cfs @	13.19 hrs, Volume=	0.042 af
Routed to Pond	d 19P : PLUN	IGE POOL 120	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 819.78' @ 13.19 hrs Surf.Area= 0.044 ac Storage= 0.057 af

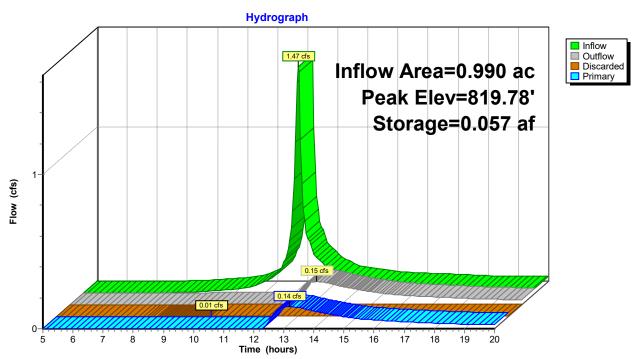
Plug-Flow detention time= 198.4 min calculated for 0.048 af (49% of inflow) Center-of-Mass det. time= 110.4 min (903.7 - 793.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	818.30'	0.000 af	24.00'W x 80.00'L x 4.67'H Field A
			0.206 af Overall - 0.206 af Embedded = 0.000 af \times 40.0% Voids
#2A	818.30'	0.155 af	retain_it retain_it 4.0' x 30 Inside #1
			Inside= 84.0"W x 48.0"H => 28.87 sf x 8.00'L = 230.9 cf
			Outside= 96.0"W x 56.0"H => 37.33 sf x 8.00'L = 298.7 cf
			3 Rows adjusted for 196.3 cf perimeter wall
		0.155 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	818.30'	0.172 in/hr Exfiltration over Surface area
#2	Primary	818.30'	12.0" Round Culvert
	-		L= 30.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 818.30' / 817.30' S= 0.0333 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#3	Device 2	819.50'	4.0" Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Device 2	821.30'	3.9' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Discarded OutFlow Max=0.01 cfs @ 10.15 hrs HW=818.35' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)


Primary OutFlow Max=0.14 cfs @ 13.19 hrs HW=819.78' (Free Discharge)

-2=Culvert (Passes 0.14 cfs of 2.96 cfs potential flow) **-3=Orifice/Grate** (Orifice Controls 0.14 cfs @ 1.82 fps)

—4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 9/13/2024 Page 14

Pond 14P: UG 120

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

<u>Page 15</u>

Summary for Pond 16P: DET 210

Inflow Area = 2.220 ac. 0.00% Impervious, Inflow Depth > 1.20" for 1-Year event 3.23 cfs @ 12.14 hrs, Volume= Inflow 0.221 af 1.15 cfs @ 12.34 hrs, Volume= 0.221 af, Atten= 64%, Lag= 12.0 min Outflow 1.15 cfs @ 12.34 hrs, Volume= Discarded = 0.221 af 0.00 cfs @ 5.00 hrs, Volume= 0.000 af Primary = Routed to Link 18L: PR POA / B Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af Routed to Link 18L: PR POA / B

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 815.20' @ 12.34 hrs Surf.Area= 7,780 sf Storage= 1,501 cf

Plug-Flow detention time= 8.2 min calculated for 0.220 af (100% of inflow) Center-of-Mass det. time= 7.6 min (801.5 - 793.9)

Volume Invert Avail.Storage Storage Description

#1 815.00' 28,806 cf Custom Stage Data (Conic) Listed below (Recalc)

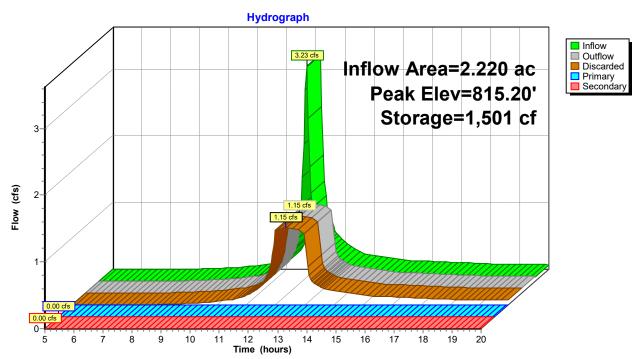
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
815.00	7,517	0	0	7,517
816.00	8,907	8,202	8,202	8,944
817.00	10,296	9,593	17,795	10,375
818.00	11,741	11,011	28,806	11,867

Device	Routing	Invert	Outlet Devices
#1	Discarded	815.00'	6.400 in/hr Exfiltration over Surface area
#2	Primary	815.00'	12.0" Round Culvert
	•		L= 127.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 815.00' / 806.40' S= 0.0677 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#3	Device 2	815.60'	6.0" Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Device 2	816.80'	14.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#5	Secondary	817.00'	10.0' long + 3.0 '/' SideZ x 8.0' breadth Broad-Crested Rectangular Weir
	•		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80
			2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64
			2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74

Discarded OutFlow Max=1.15 cfs @ 12.34 hrs HW=815.20' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.15 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=815.00' (Free Discharge)

-2=Culvert (Controls 0.00 cfs)


-3=Orifice/Grate (Controls 0.00 cfs)

-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=815.00' (Free Discharge)
5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 9/13/2024 Page 16

Pond 16P: DET 210

Volume

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

<u>Page 17</u>

Summary for Pond 17P: DET 220

Inflow Area = 1.110 ac. 0.00% Impervious, Inflow Depth > 1.27" for 1-Year event 1.73 cfs @ 12.13 hrs, Volume= Inflow 0.117 af 0.18 cfs @ 13.17 hrs, Volume= 0.112 af, Atten= 90%, Lag= 62.6 min Outflow Discarded = 0.18 cfs @ 13.17 hrs, Volume= 0.112 af 0.00 cfs @ 5.00 hrs, Volume= 0.000 af Primary Routed to Link 18L: PR POA / B Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af

Routed to Link 18L: PR POA / B

Invert

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 801.61' @ 13.17 hrs Surf.Area= 1,796 sf Storage= 2,142 cf

Plug-Flow detention time= 129.0 min calculated for 0.112 af (95% of inflow)

Avail.Storage Storage Description

Center-of-Mass det. time= 111.9 min (901.3 - 789.4)

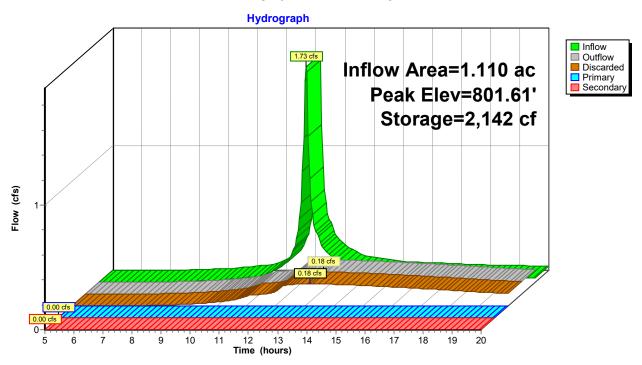
#1	800.00'	8,87	75 cf Custom	Stage Data (Conic	c) Listed below (Recal	c)
Elevation (fee		ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
800.0	00	879	0	0	879	
801.0	00	1,441	1,148	1,148	1,454	
802.0	00	2,039	1,731	2,880	2,070	
803.0	00	2,810	2,414	5,294	2,860	
804.0	00	4,412	3,581	8,875	4,476	
Device	Routing	Invert	Outlet Device	S		
#1	Discarded	800.00'	4.278 in/hr Ex	filtration over Sur	face area	
#2	Primary	800.50'	15.0" Round	Culvert		
			L= 39.0' CPF	P, projecting, no hea	adwall, Ke= 0.900	
).00' S= 0.0128 '/' C	Cc= 0.900
			•	w Area= 1.23 sf		
#3	Device 2	802.00'		fice/Grate C= 0.6	00	
				r flow at low heads		
#4	Device 2	802.60'			ngular Weir 2 End C	
#5	Secondary	803.00'				ed Rectangular Weir
					0 1.00 1.20 1.40 1.0	60 1.80
				00 3.50 4.00 4.50		
					2.69 2.68 2.68 2.66	5 2.64 2.64
			2.64 2.65 2.6	65 2.66 2.66 2.68	2.70 2.74	

Discarded OutFlow Max=0.18 cfs @ 13.17 hrs HW=801.61' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.18 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=800.00' (Free Discharge)

-2=Culvert (Controls 0.00 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)


-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=800.00' (Free Discharge)

5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 9/13/2024 Page 18

Pond 17P: DET 220

Volume

Printed 9/13/2024

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 19

Summary for Pond 19P: PLUNGE POOL 120

Inflow Area = 0.990 ac, 0.00% Impervious, Inflow Depth > 0.50" for 1-Year event Inflow = 0.14 cfs @ 13.19 hrs, Volume= 0.042 af Outflow = 0.15 cfs @ 13.72 hrs, Volume= 0.030 af, Atten= 0%, Lag= 31.5 min Discarded = 0.01 cfs @ 13.70 hrs, Volume= 0.009 af Primary = 0.13 cfs @ 13.72 hrs, Volume= 0.022 af

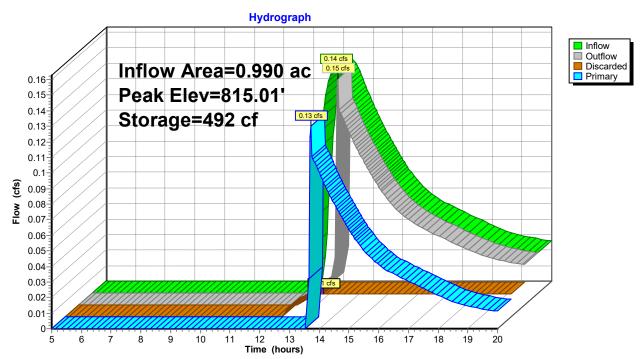
Routed to Link 15L: PR POA / A

Invert

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 815.01' @ 13.70 hrs Surf.Area= 751 sf Storage= 492 cf

Plug-Flow detention time= 106.5 min calculated for 0.030 af (73% of inflow)

Avail.Storage Storage Description


Center-of-Mass det. time= 45.2 min (952.8 - 907.6)

TOTALLIG	1111011	,a	age etc.age	2 00011ptio11	
#1	814.00'	1,51	7 cf Custom	Stage Data (Pri	smatic) Listed below (Recalc)
Elevation (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
814.0		223	0	0	
815.0	00	744	484	484	
816.0	00	1,322	1,033	1,517	
Device	Routing	Invert	Outlet Devices	5	
#1	Discarded	814.00'	0.860 in/hr Ex	filtration over S	Surface area
#2	Primary	815.00'	30.0' long + 3	3.0 '/' SideZ x 8	.0' breadth Broad-Crested Rectangular We
	•		Head (feet) 0.	.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80
			2.00 2.50 3.0	0 3.50 4.00 4	.50 5.00 5.50
			Coef. (English) 2.43 2.54 2.	70 2.69 2.68 2.68 2.66 2.64 2.64
			2.64 2.65 2.6	5 2.66 2.66 2	.68 2.70 2.74

Discarded OutFlow Max=0.01 cfs @ 13.70 hrs HW=815.01' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

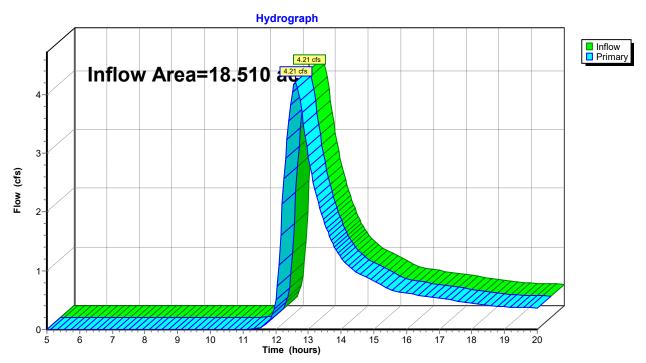
Primary OutFlow Max=0.09 cfs @ 13.72 hrs HW=815.01' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 0.09 cfs @ 0.26 fps)

Pond 19P: PLUNGE POOL 120

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 21

Summary for Link 4L: EX POA / A


Inflow Area = 18.510 ac, 0.00% Impervious, Inflow Depth > 0.46" for 1-Year event

Inflow = 4.21 cfs @ 12.60 hrs, Volume= 0.709 af

Primary = 4.21 cfs @ 12.60 hrs, Volume= 0.709 af, Atten= 0%, Lag= 0.0 min

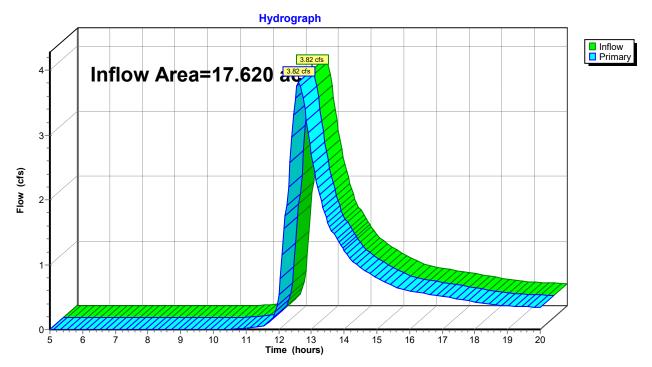
Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 4L: EX POA / A

Printed 9/13/2024

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Summary for Link 15L: PR POA / A


17.620 ac, 0.00% Impervious, Inflow Depth > 0.45" for 1-Year event 3.82 cfs @ 12.61 hrs, Volume= 0.663 af Inflow Area =

Inflow

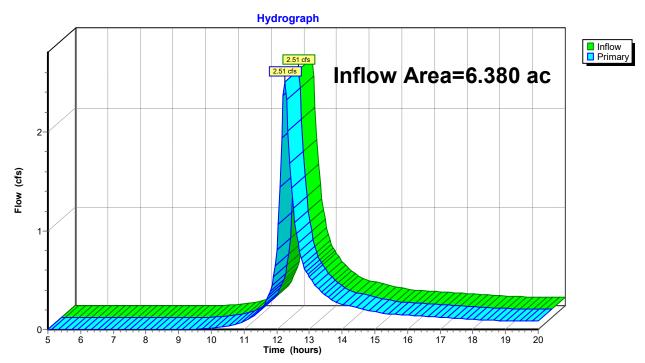
3.82 cfs @ 12.61 hrs, Volume= 0.663 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 15L: PR POA / A

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Inflow Area = 6.380 ac, 0.00% Impervious, Inflow Depth > 0.43" for 1-Year event


Inflow = 2.51 cfs @ 12.25 hrs, Volume= 0.226 af

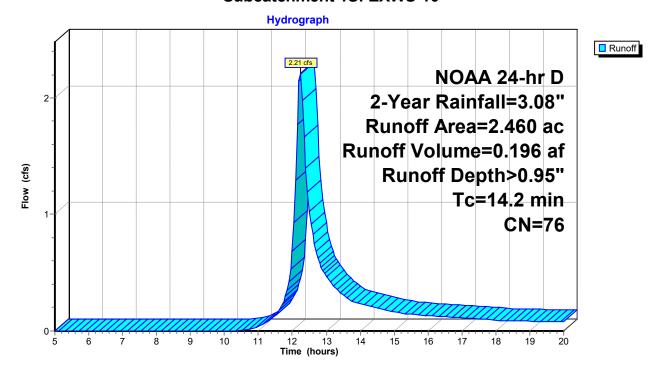
Primary = 2.51 cfs @ 12.25 hrs, Volume= 0.226 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 18L: PR POA / B

Summary for Link 18L: PR POA / B

Summary for Subcatchment 1S: EXWS-10


Runoff = 2.21 cfs @ 12.23 hrs, Volume= 0.196 af, Depth> 0.95"

Routed to Link 4L: EX POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 2-Year Rainfall=3.08"

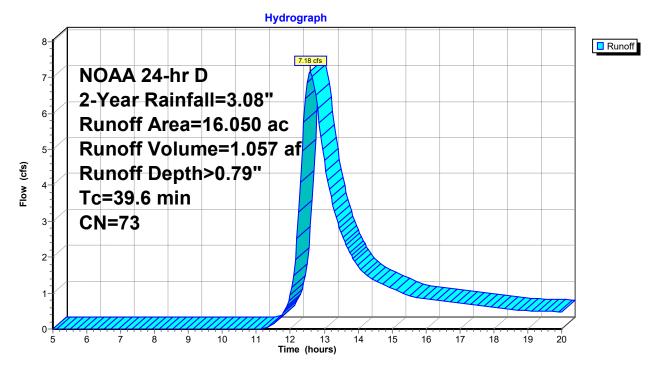
	Area	(ac)	CN	Desc	cription		
*	2.	460	76				
	2.460 100.00% Pervious Are				00% Pervi	ous Area	
		Lengt			,	. ,	Description
_	(min)	(fee	τ)	(ft/ft)	(ft/sec)	(cfs)	
	14.2						Direct Entry,

Subcatchment 1S: EXWS-10

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Runoff = 7.18 cfs @ 12.59 hrs, Volume= 1.057 af, Depth> 0.79"

Routed to Link 4L: EX POA / A

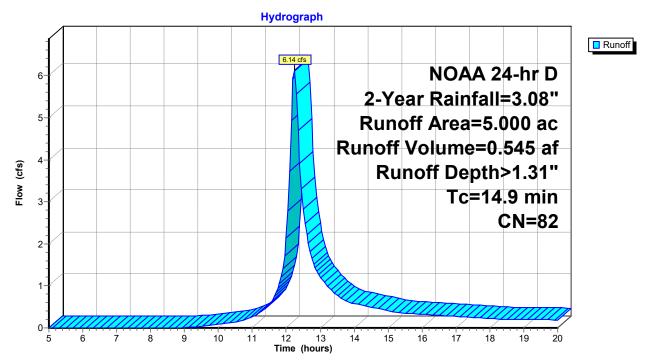

A () ON D : (:

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 2-Year Rainfall=3.08"

Summary for Subcatchment 2S: EXWS-11

	Area	(ac)	CN	Desc	cription		
*	16.	050	73				
	16.	050		100.	00% Pervi	ous Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	39.6						Direct Entry,

Subcatchment 2S: EXWS-11

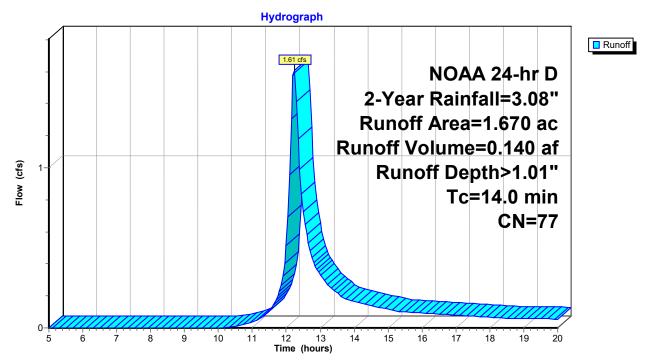

Summary for Subcatchment 5S: EXWS-20 / B

Runoff = 6.14 cfs @ 12.24 hrs, Volume= 0.545 af, Depth> 1.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 2-Year Rainfall=3.08"

	Area	(ac) (CN Des	cription		
	* 5.	.000	82			
•	5.	.000	100.	00% Pervi	ous Area	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	14.9					Direct Entry.

Subcatchment 5S: EXWS-20 / B


Summary for Subcatchment 6S: EXWS-30 / C

Runoff = 1.61 cfs @ 12.23 hrs, Volume= 0.140 af, Depth> 1.01"

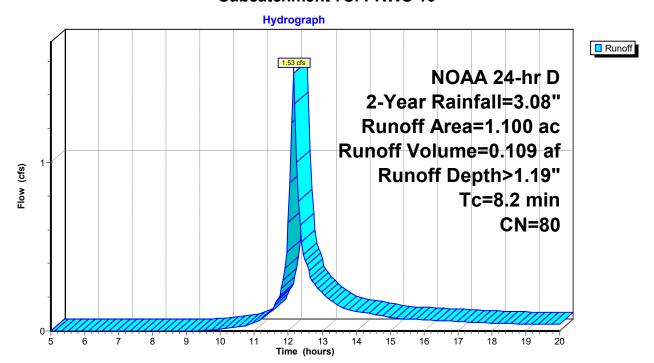
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 2-Year Rainfall=3.08"

_	Area	(ac)	CN	Desc	cription		
*	1.	670	77				
	1.	670		100.	00% Pervi	ous Area	
	Tc	Leng			•	Capacity	Description
_	(min)	(fee	:()	(ft/ft)	(ft/sec)	(cfs)	Direct Entry
	14.0						Direct Entry,

Subcatchment 6S: EXWS-30 / C

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Summary for Subcatchment 7S: PRWS-10


Runoff = 1.53 cfs @ 12.16 hrs, Volume= 0.109 af, Depth> 1.19"

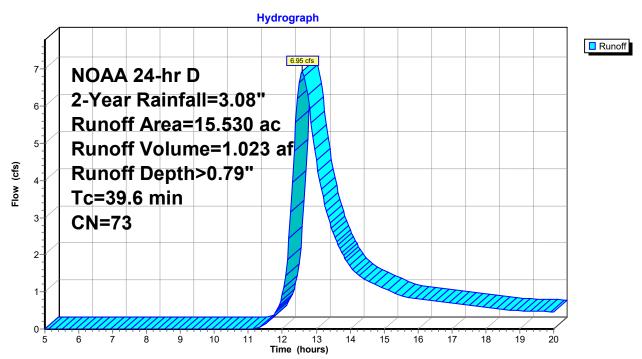
Routed to Link 15L: PR POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 2-Year Rainfall=3.08"

	Area	(ac)	CN	Desc	cription		
*	1.	100	80				
	1.	100		100.	00% Pervi	ous Area	
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	8.2						Direct Entry,

Subcatchment 7S: PRWS-10

Summary for Subcatchment 8S: PRWS-11


Runoff = 6.95 cfs @ 12.59 hrs, Volume= 1.023 af, Depth> 0.79"

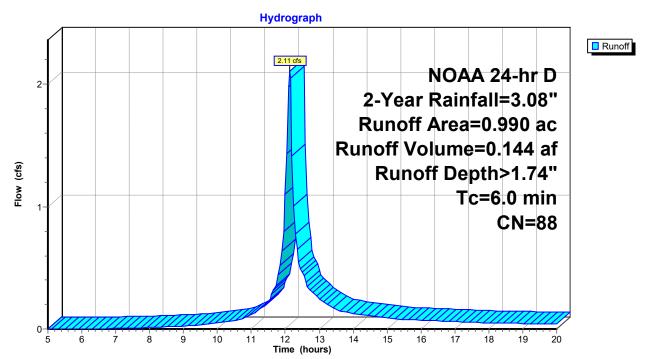
Routed to Link 15L: PR POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 2-Year Rainfall=3.08"

	Area	(ac)	CN	Desc	cription		
*	15.	530	73				
	15.	530		100.0	00% Pervi	ous Area	
	Tc (min)	Lengt (fee		lope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	39.6						Direct Entry,

Subcatchment 8S: PRWS-11

Summary for Subcatchment 9S: PRWS-12


Runoff = 2.11 cfs @ 12.13 hrs, Volume= 0.144 af, Depth> 1.74"

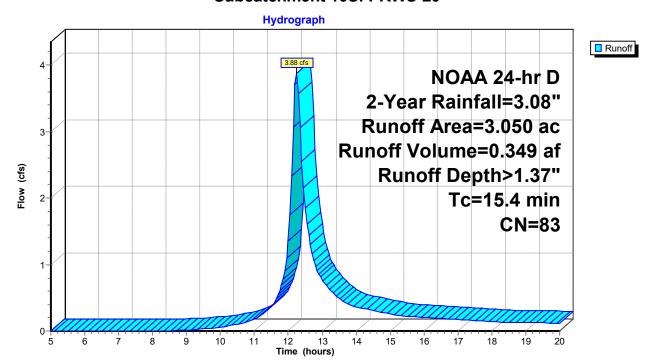
Routed to Pond 14P: UG 120

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 2-Year Rainfall=3.08"

	Area	(ac)	CN	Desc	cription		
*	0.	990	88				
	0.	990		100.	00% Pervi	ous Area	
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	<u> </u>
	6.0						Direct Entry,

Subcatchment 9S: PRWS-12

Summary for Subcatchment 10S: PRWS-20


Runoff = 3.88 cfs @ 12.24 hrs, Volume= 0.349 af, Depth> 1.37"

Routed to Link 18L: PR POA / B

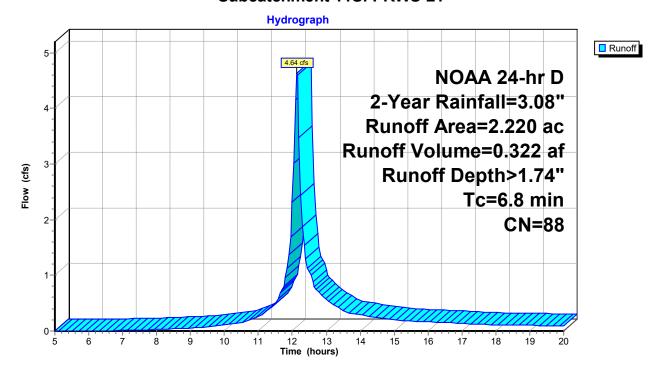
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 2-Year Rainfall=3.08"

	Area	(ac)	CN	Desc	cription		
*	3.	050	83				
	3.	050		100.	00% Pervi	ous Area	
	Тс	Leng	th	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	15.4						Direct Entry,

Subcatchment 10S: PRWS-20

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Runoff = 4.64 cfs @ 12.14 hrs, Volume= 0.322 af, Depth> 1.74"


Routed to Pond 16P: DET 210

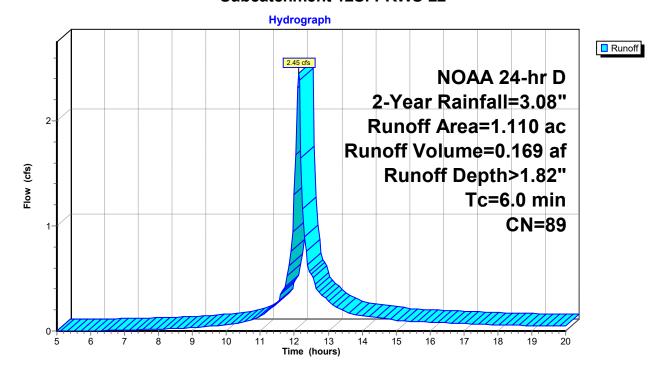
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 2-Year Rainfall=3.08"

	Area	(ac)	CN	Desc	cription		
*	2.	220	88				
	2.220 100.0				00% Pervi	ous Area	
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	6.8						Direct Entry,

Summary for Subcatchment 11S: PRWS-21

Subcatchment 11S: PRWS-21

Summary for Subcatchment 12S: PRWS-22

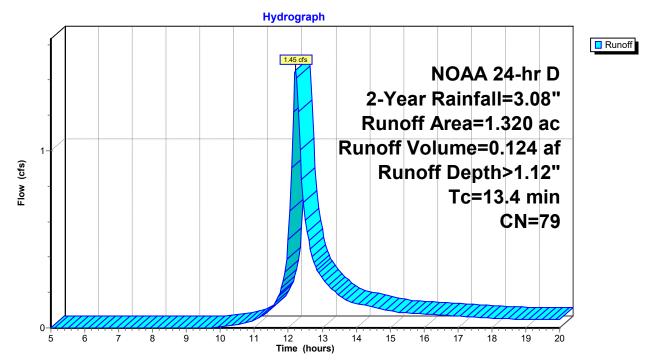

Runoff = 2.45 cfs @ 12.13 hrs, Volume= 0.169 af, Depth> 1.82"

Routed to Pond 17P: DET 220

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 2-Year Rainfall=3.08"

	Area	(ac)	CN	Desc	cription		
*	1.	110	89				
	1.	110		100.	00% Pervi	ous Area	
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry,

Subcatchment 12S: PRWS-22


Summary for Subcatchment 13S: PRWS-30 / C

Runoff = 1.45 cfs @ 12.22 hrs, Volume= 0.124 af, Depth> 1.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 2-Year Rainfall=3.08"

	Area	(ac)	CN	Desc	cription		
7	· 1.	.320	79				
	1.	.320		100.	00% Pervi	ous Area	
	Тс	Lengtl	h S	Slope	Velocity	Capacity	Description
	(min)	(feet	t)	(ft/ft)	(ft/sec)	(cfs)	
	13.4						Direct Entry.

Subcatchment 13S: PRWS-30 / C

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 35

Summary for Pond 14P: UG 120

Inflow Area =	0.990 ac,	0.00% Impervious, Inflow D	Depth > 1.74" for 2-Year event
Inflow =	2.11 cfs @	12.13 hrs, Volume=	0.144 af
Outflow =	0.32 cfs @	12.73 hrs, Volume=	0.093 af, Atten= 85%, Lag= 36.1 min
Discarded =	0.01 cfs @	9.10 hrs, Volume=	0.007 af
Primary =	0.31 cfs @	12.73 hrs, Volume=	0.085 af
Routed to Pond	d 19P : PLUN	IGE POOL 120	

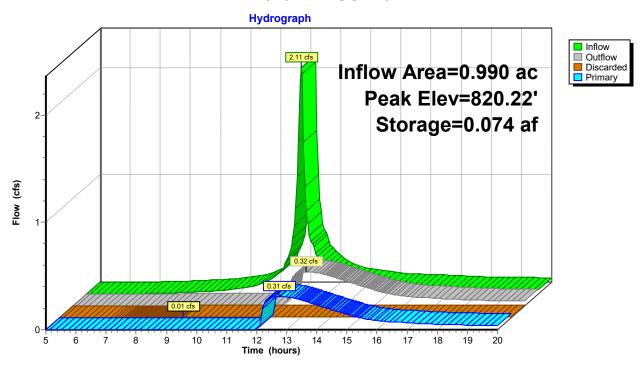
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 820.22' @ 12.73 hrs Surf.Area= 0.044 ac Storage= 0.074 af

Plug-Flow detention time= 161.3 min calculated for 0.092 af (64% of inflow) Center-of-Mass det. time= 86.9 min (870.7 - 783.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	818.30'	0.000 af	24.00'W x 80.00'L x 4.67'H Field A
			0.206 af Overall - 0.206 af Embedded = 0.000 af x 40.0% Voids
#2A	818.30'	0.155 af	retain_it retain_it 4.0' x 30 Inside #1
			Inside= 84.0"W x 48.0"H => 28.87 sf x 8.00'L = 230.9 cf
			Outside= 96.0"W x 56.0"H => 37.33 sf x 8.00'L = 298.7 cf
			3 Rows adjusted for 196.3 cf perimeter wall
		0.155 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	818.30'	0.172 in/hr Exfiltration over Surface area
#2	Primary	818.30'	12.0" Round Culvert
	-		L= 30.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 818.30' / 817.30' S= 0.0333 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#3	Device 2	819.50'	4.0" Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Device 2	821.30'	3.9' long Sharp-Crested Rectangular Weir 2 End Contraction(s)


Discarded OutFlow Max=0.01 cfs @ 9.10 hrs HW=818.35' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.31 cfs @ 12.73 hrs HW=820.22' (Free Discharge)

-2=Culvert (Passes 0.31 cfs of 3.55 cfs potential flow)

-3=Orifice/Grate (Orifice Controls 0.31 cfs @ 3.57 fps)
-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 14P: UG 120

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

<u>Page 37</u>

Summary for Pond 16P: DET 210

Inflow Area = 2.220 ac. 0.00% Impervious, Inflow Depth > 1.74" for 2-Year event 4.64 cfs @ 12.14 hrs, Volume= Inflow 0.322 af 1.19 cfs @ 12.43 hrs, Volume= 0.322 af, Atten= 74%, Lag= 17.7 min Outflow Discarded = 1.19 cfs @ 12.43 hrs, Volume= 0.322 af 0.00 cfs @ 5.00 hrs, Volume= 0.000 af Primary Routed to Link 18L: PR POA / B Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af

Routed to Link 18L: PR POA / B

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 815.37' @ 12.43 hrs Surf.Area= 8,024 sf Storage= 2,911 cf

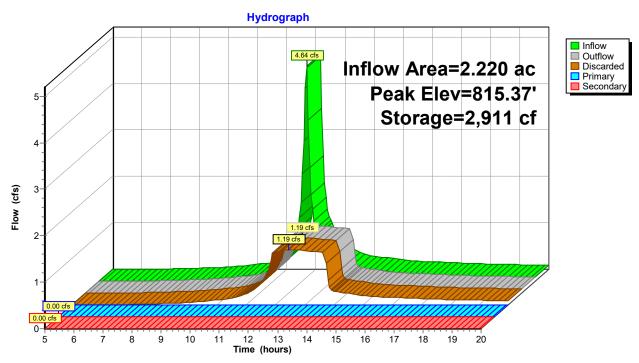
Plug-Flow detention time= 15.6 min calculated for 0.322 af (100% of inflow)

Center-of-Mass det. time= 15.1 min (799.5 - 784.4)

Volume	Invert	Avail.Sto	rage Storage	Description				
#1	815.00'	28,80	06 cf Custom	of Custom Stage Data (Conic) Listed below (Recalc)		ecalc)		
Elevatio		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
815.0		7,517	0	0	7,517			
816.0		8,907	8,202	8,202	8,944			
817.0	00	10,296	9,593	17,795	10,375			
818.0	00	11,741	11,011	28,806	11,867			
Device	Routing	Invert	Outlet Device	es				
#1	Discarded	815.00'	6.400 in/hr E	xfiltration over Sur	rface area	_		
#2	Primary	815.00'	12.0" Round Culvert					
				PP, projecting, no h Invert= 815.00' / 80				
			n= 0.012, Flow Area= 0.79 sf					
#3	Device 2	815.60'	6.0" Vert. Orifice/Grate C= 0.600					
				Limited to weir flow at low heads				
#4	Device 2	816.80'		narp-Crested Recta				
#5	Secondary	817.00'	Head (feet) (2.00 2.50 3. Coef. (Englis	3.0 '/' SideZ x 8.0' 0.20 0.40 0.60 0.8 00 3.50 4.00 4.50 h) 2.43 2.54 2.70 65 2.66 2.66 2.68	30 1.00 1.20 1.40 0 5.00 5.50 2.69 2.68 2.68 :			

Discarded OutFlow Max=1.19 cfs @ 12.43 hrs HW=815.37' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.19 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=815.00' (Free Discharge)


—2=Culvert (Controls 0.00 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

—4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=815.00' (Free Discharge)
5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 16P: DET 210

Volume

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 39

Summary for Pond 17P: DET 220

Inflow Area = 1.110 ac. 0.00% Impervious, Inflow Depth > 1.82" for 2-Year event 2.45 cfs @ 12.13 hrs, Volume= Inflow 0.169 af 0.29 cfs (a) 12.99 hrs, Volume= 0.148 af, Atten= 88%, Lag= 51.4 min Outflow 0.21 cfs @ 12.99 hrs, Volume= 0.141 af Discarded = 0.08 cfs @ 12.99 hrs, Volume= 0.007 af Primary Routed to Link 18L: PR POA / B Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af

Routed to Link 18L: PR POA / B

Invert

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 802.17' @ 12.99 hrs Surf.Area= 2,158 sf Storage= 3,228 cf

Plug-Flow detention time= 149.8 min calculated for 0.147 af (87% of inflow)

Avail.Storage Storage Description

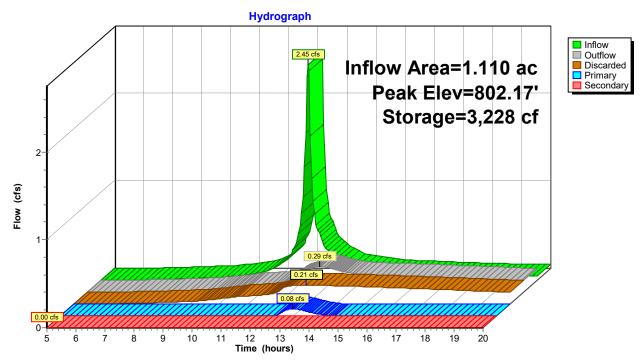
Center-of-Mass det. time= 109.7 min (889.8 - 780.1)

#1	800.00'	8,87	75 cf Custom	Stage Data (Conic	c) Listed below (Reca	alc)		
Elevatio		ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
800.0	00	879	0	0	879			
801.0	00	1,441	1,148	1,148	1,454			
802.0	00	2,039	1,731	2,880	2,070			
803.0	00	2,810	2,414	5,294	2,860			
804.0	00	4,412	3,581	8,875	4,476			
Device	Routing	Invert	Outlet Devices	S				
#1	Discarded	800.00'	4.278 in/hr Ex	filtration over Sur	face area			
#2	Primary	800.50'	15.0" Round	Culvert				
					adwall, Ke= 0.900			
					0.00' S= 0.0128 '/'	Cc= 0.900		
			n= 0.012, Flow Area= 1.23 sf					
#3	Device 2	802.00'		fice/Grate C= 0.6				
				r flow at low heads				
#4	Device 2	802.60'			ngular Weir 2 End			
#5	Secondary	803.00'				ted Rectangular Weir		
					0 1.00 1.20 1.40 1	1.60 1.80		
				00 3.50 4.00 4.50				
			, ,	,	2.69 2.68 2.68 2.6	66 2.64 2.64		
			2.64 2.65 2.6	35 2.66 2.66 2.68	2.70 2.74			

Discarded OutFlow Max=0.21 cfs @ 12.99 hrs HW=802.17' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.21 cfs)

Primary OutFlow Max=0.08 cfs @ 12.99 hrs HW=802.17' (Free Discharge)

2=Culvert (Passes 0.08 cfs of 4.76 cfs potential flow) **3=Orifice/Grate** (Orifice Controls 0.08 cfs @ 1.39 fps)


-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=800.00' (Free Discharge)

5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 9/13/2024 Page 40

Pond 17P: DET 220

Printed 9/13/2024

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

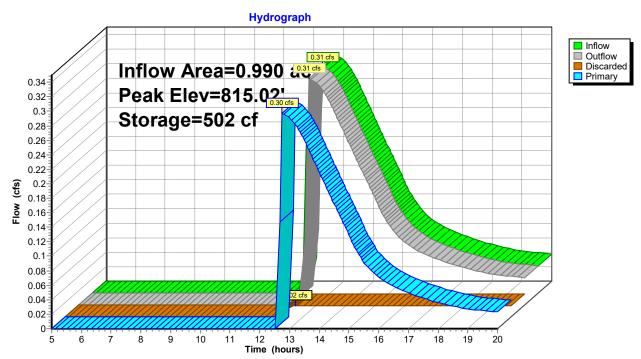
Page 41

Summary for Pond 19P: PLUNGE POOL 120

Inflow Area = 0.990 ac, 0.00% Impervious, Inflow Depth > 1.03" for 2-Year event 0.31 cfs @ 12.73 hrs, Volume= Inflow 0.085 af 0.31 cfs @ 12.75 hrs, Volume= 0.074 af, Atten= 0%, Lag= 1.1 min Outflow 0.02 cfs @ 12.75 hrs, Volume= Discarded = 0.010 af 0.30 cfs @ 12.75 hrs, Volume= 0.064 af Primary =

Routed to Link 15L: PR POA / A

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 815.02' @ 12.75 hrs Surf.Area= 758 sf Storage= 502 cf


Plug-Flow detention time= 55.0 min calculated for 0.074 af (87% of inflow) Center-of-Mass det. time= 20.0 min (893.1 - 873.0)

Volume	Invert	Avail.Stor	age Storage	Description	
#1	814.00'	1,51	7 cf Custom	Stage Data (Pri	smatic) Listed below (Recalc)
Elevatio		ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
814.0	00	223	0	0	
815.0	00	744	484	484	
816.0	00	1,322	1,033	1,517	
Device	Routing	Invert	Outlet Devices	S	
#1	Discarded	814.00'	0.860 in/hr Ex	filtration over S	Surface area
#2	Primary	815.00'	30.0' long + 3	3.0 '/' SideZ x 8	0' breadth Broad-Crested Rectangular Weir
	•		Head (feet) 0	.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80
			2.00 2.50 3.0	00 3.50 4.00 4	50 5.00 5.50
			Coef. (English	n) 2.43 2.54 2. ⁻	70 2.69 2.68 2.68 2.66 2.64 2.64
			2.64 2.65 2.6	55 2.66 2.66 2	.68 2.70 2.74

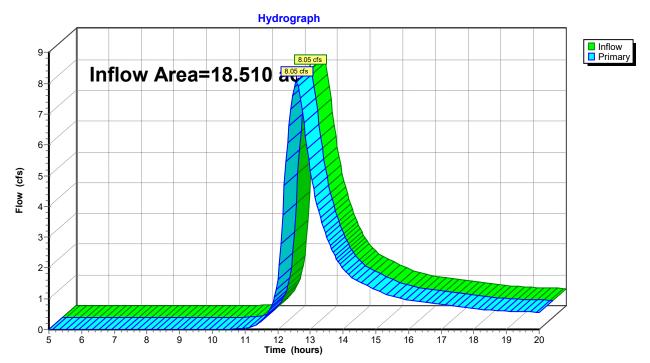
Discarded OutFlow Max=0.02 cfs @ 12.75 hrs HW=815.02' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.29 cfs @ 12.75 hrs HW=815.02' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 0.29 cfs @ 0.38 fps)

Pond 19P: PLUNGE POOL 120

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Summary for Link 4L: EX POA / A


Inflow Area =

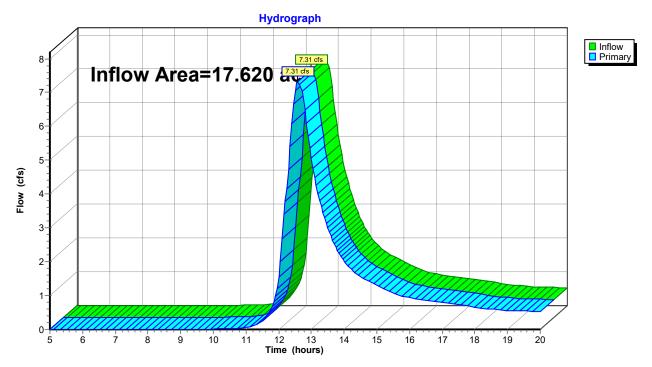
Inflow

18.510 ac, 0.00% Impervious, Inflow Depth > 0.81" for 2-Year event 8.05 cfs @ 12.57 hrs, Volume= 1.253 af 8.05 cfs @ 12.57 hrs, Volume= 1.253 af, Atten= 0%, Lag= 0.0 in the control of th 1.253 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 4L: EX POA / A

17.620 ac, 0.00% Impervious, Inflow Depth > 0.81" for 2-Year event 7.31 cfs @ 12.58 hrs, Volume= 1.196 af Inflow Area =


Inflow

7.31 cfs @ 12.58 hrs, Volume= 1.196 af, Atten= 0%, Lag= 0.0 min Primary

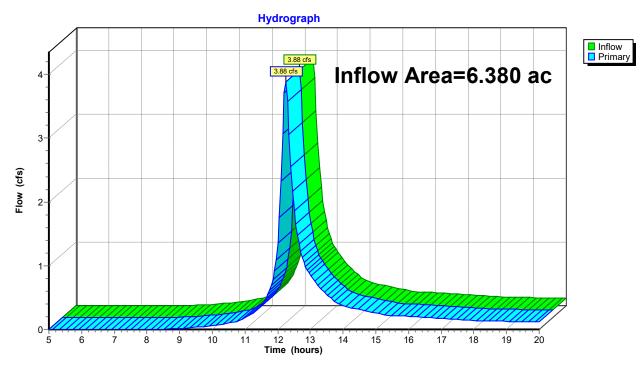
Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 15L: PR POA / A

Summary for Link 15L: PR POA / A

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Summary for Link 18L: PR POA / B


 $6.380 \ \text{ac}, \quad 0.00\% \ \text{Impervious}, \ \text{Inflow Depth} > \ 0.67" \ \text{ for } \ 2\text{-Year event} \\ 3.88 \ \text{cfs} \ @ \ 12.24 \ \text{hrs}, \ \text{Volume} = \ 0.356 \ \text{af}$ Inflow Area =

Inflow

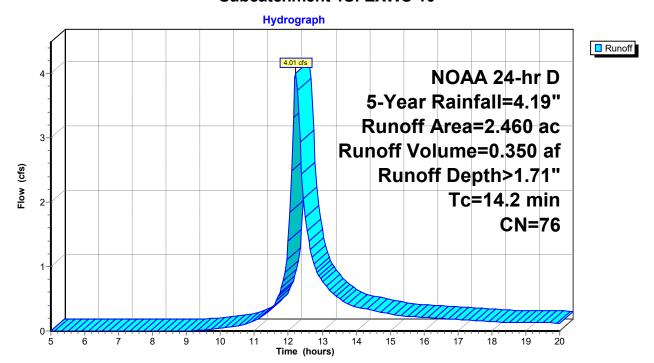
3.88 cfs @ 12.24 hrs, Volume= 0.356 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 18L: PR POA / B

NOAA 24-hr D 5-Year Rainfall=4.19"

DCAD® 10.20-4a S/II 06105 © 2023 HydroCAD Software Solutions LLC


Runoff = 4.01 cfs @ 12.23 hrs, Volume= 0.350 af, Depth> 1.71" Routed to Link 4L : EX POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

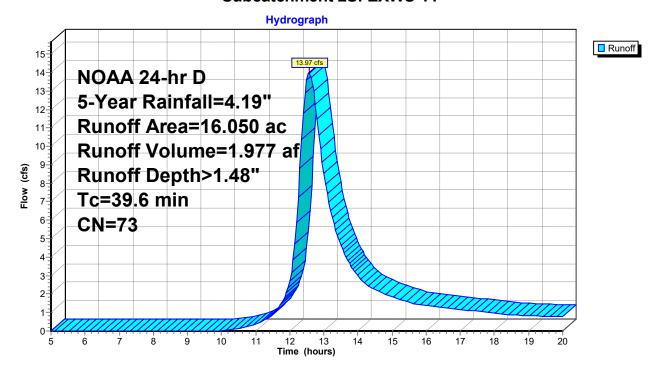
	Area	(ac)	CN	Desc	cription		
*	2.	460	76				
	2.460 100.00% Pervious Area						
		Leng			•		Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	14.2						Direct Entry,

Summary for Subcatchment 1S: EXWS-10

Subcatchment 1S: EXWS-10

•

Runoff = 13.97 cfs @ 12.57 hrs, Volume= 1.977 af, Depth> 1.48"


Routed to Link 4L: EX POA / A

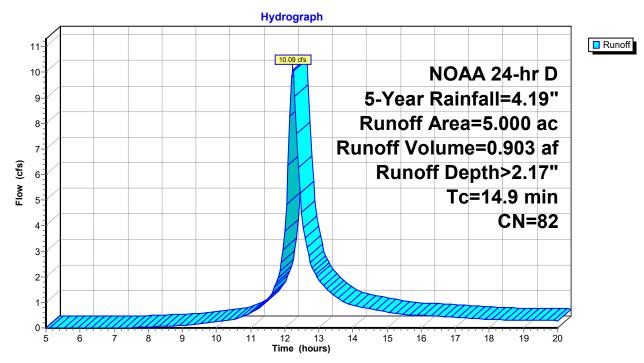
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 5-Year Rainfall=4.19"

Summary for Subcatchment 2S: EXWS-11

	Area	(ac)	CN	Desc	cription		
*	16.	050	73				
	16.050 100.00% Pervious A				00% Pervi	ous Area	
	Тс	_		•	•		Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	39.6						Direct Entry,

Subcatchment 2S: EXWS-11

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

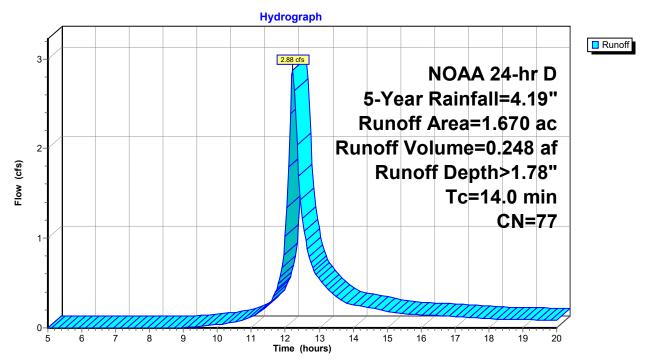

Runoff = 10.09 cfs @ 12.23 hrs, Volume= 0.903 af, Depth> 2.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 5-Year Rainfall=4.19"

Summary for Subcatchment 5S: EXWS-20 / B

_	Area	(ac)	CN	Desc	cription		
*	5.	.000	82				
	5.000 100.00% Pervious Area						
	Тс	Lengt	:h S	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	14.9						Direct Entry,

Subcatchment 5S: EXWS-20 / B


Summary for Subcatchment 6S: EXWS-30 / C

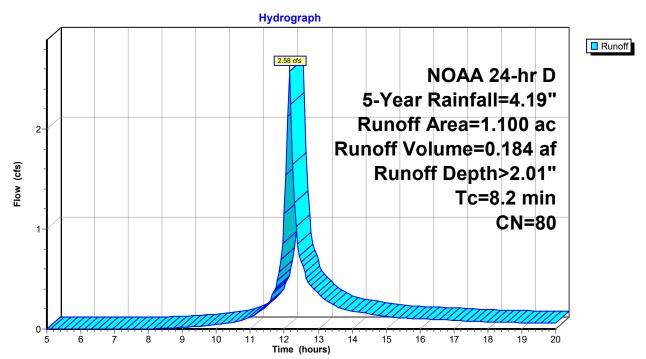
Runoff = 2.88 cfs @ 12.22 hrs, Volume= 0.248 af, Depth> 1.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 5-Year Rainfall=4.19"

Area	(ac)	CN D	escription		
* 1.	.670	77			
1.	.670	10	00.00% Pervi	ious Area	
Тс	Length	n Slop	e Velocity	Capacity	Description
(min)	(feet) (ft/1	t) (ft/sec)	(cfs)	
14.0					Direct Entry.

Subcatchment 6S: EXWS-30 / C

Summary for Subcatchment 7S: PRWS-10


Runoff = 2.58 cfs @ 12.15 hrs, Volume= 0.184 af, Depth> 2.01"

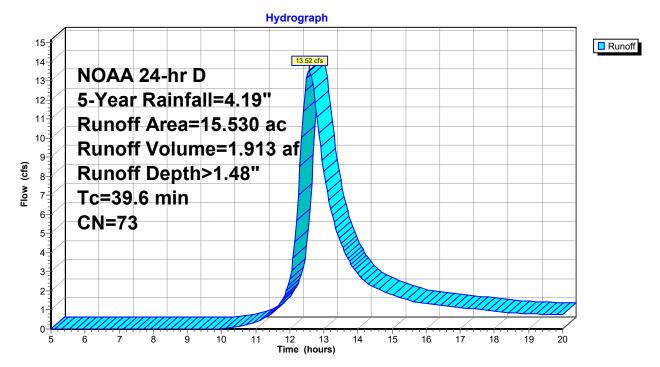
Routed to Link 15L: PR POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 5-Year Rainfall=4.19"

	Area	(ac)	CN	Desc	cription		
*	1.	100	80				
	1.100 100.00% Pervious Area						
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	8.2						Direct Entry,

Subcatchment 7S: PRWS-10

Summary for Subcatchment 8S: PRWS-11


Runoff = 13.52 cfs @ 12.57 hrs, Volume= 1.913 af, Depth> 1.48"

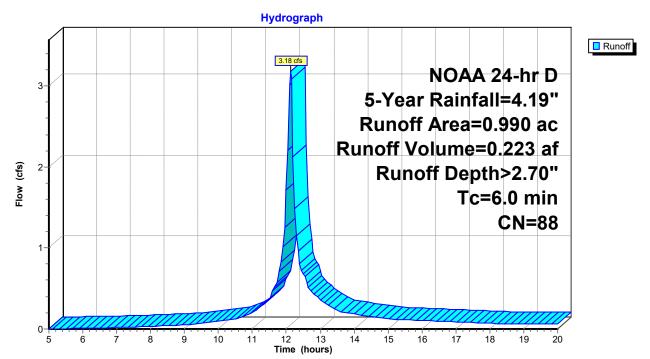
Routed to Link 15L: PR POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 5-Year Rainfall=4.19"

	Area	(ac)	CN	Desc	cription		
*	15.	530	73				
	15.530		100.00% Pervious Area			ous Area	
	Тс	_			•		Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	39.6						Direct Entry,

Subcatchment 8S: PRWS-11

Summary for Subcatchment 9S: PRWS-12


Runoff = 3.18 cfs @ 12.13 hrs, Volume= 0.223 af, Depth> 2.70"

Routed to Pond 14P: UG 120

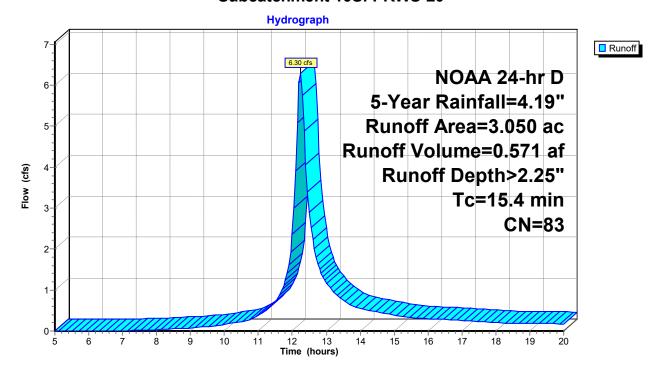
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 5-Year Rainfall=4.19"

	Area	(ac)	CN	Desc	cription		
*	0.	990	88				
	0.	990		100.	00% Pervi	ous Area	
	Тс	Leng	th	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	·
	6.0						Direct Entry,

Subcatchment 9S: PRWS-12

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Runoff = 6.30 cfs @ 12.24 hrs, Volume= 0.571 af, Depth> 2.25"


Routed to Link 18L: PR POA / B

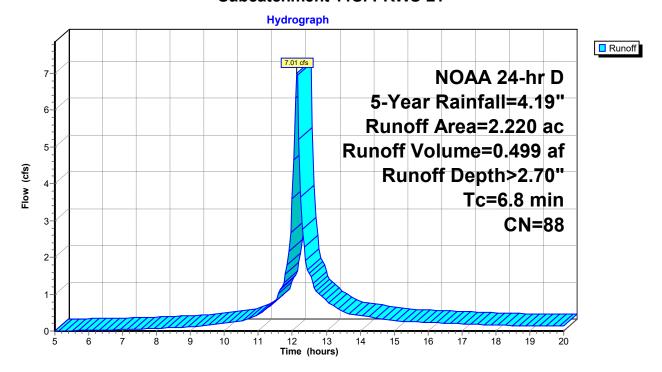
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 5-Year Rainfall=4.19"

	Area	(ac)	CN	Desc	cription		
*	3.	050	83				
	3.	050		100.	00% Pervi	ous Area	
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	15.4						Direct Entry,

Summary for Subcatchment 10S: PRWS-20

Subcatchment 10S: PRWS-20

Summary for Subcatchment 11S: PRWS-21


Runoff = 7.01 cfs @ 12.14 hrs, Volume= 0.499 af, Depth> 2.70"

Routed to Pond 16P: DET 210

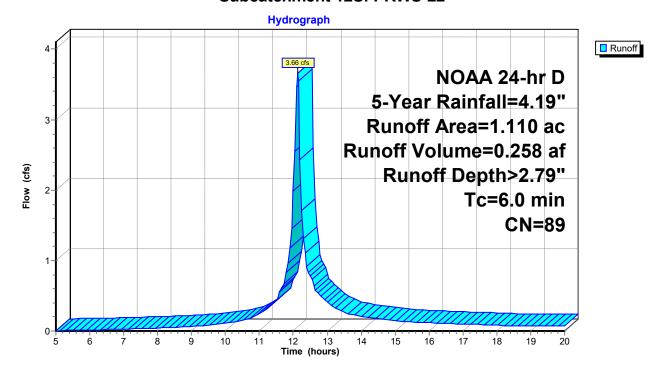
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 5-Year Rainfall=4.19"

	Area	(ac)	CN	Desc	cription		
*	2.	220	88				
	2.	220		100.	00% Pervi	ous Area	
		Leng	th		•		Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.8						Direct Entry,

Subcatchment 11S: PRWS-21

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Summary for Subcatchment 12S: PRWS-22

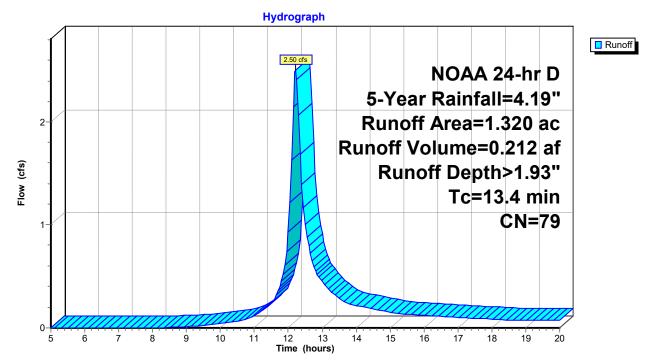

Runoff = 3.66 cfs @ 12.13 hrs, Volume= 0.258 af, Depth> 2.79"

Routed to Pond 17P: DET 220

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 5-Year Rainfall=4.19"

	Area	(ac)	CN	Desc	cription		
*	1.	110	89				
	1.	110		100.	00% Pervi	ous Area	
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry,

Subcatchment 12S: PRWS-22


Summary for Subcatchment 13S: PRWS-30 / C

Runoff = 2.50 cfs @ 12.22 hrs, Volume= 0.212 af, Depth> 1.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 5-Year Rainfall=4.19"

	Area	(ac)	CN	Desc	ription		
	* 1.	.320	79				
•	1.	.320		100.0	00% Pervi	ous Area	
	Тс	Lengtl	h Slo	ope	Velocity	Capacity	Description
	(min)	(feet	t) (f	ft/ft)	(ft/sec)	(cfs)	·
	13.4						Direct Entry.

Subcatchment 13S: PRWS-30 / C

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 57

Summary for Pond 14P: UG 120

Inflow Area =	0.990 ac,	0.00% Impervious, Inflow D	Depth > 2.70" for 5-Year event
Inflow =	3.18 cfs @	12.13 hrs, Volume=	0.223 af
Outflow =	0.53 cfs @	12.63 hrs, Volume=	0.170 af, Atten= 83%, Lag= 30.0 min
Discarded =	0.01 cfs @	7.55 hrs, Volume=	0.008 af
Primary =	0.52 cfs @	12.63 hrs, Volume=	0.162 af
Routed to Pond	d 19P : PLUN	IGE POOL 120	

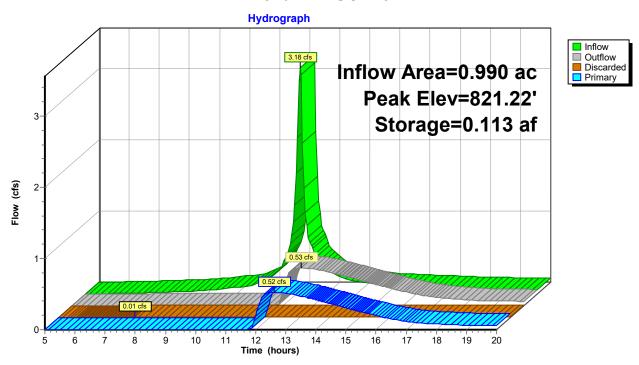
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 821.22' @ 12.63 hrs Surf.Area= 0.044 ac Storage= 0.113 af

Plug-Flow detention time= 153.3 min calculated for 0.169 af (76% of inflow) Center-of-Mass det. time= 92.7 min (865.2 - 772.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	818.30'	0.000 af	24.00'W x 80.00'L x 4.67'H Field A
			0.206 af Overall - 0.206 af Embedded = 0.000 af x 40.0% Voids
#2A	818.30'	0.155 af	retain_it retain_it 4.0' x 30 Inside #1
			Inside= 84.0"W x 48.0"H => 28.87 sf x 8.00'L = 230.9 cf
			Outside= 96.0"W x 56.0"H => 37.33 sf x 8.00'L = 298.7 cf
			3 Rows adjusted for 196.3 cf perimeter wall
		0.155 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device Routing Invert Outlet Device		Invert	Outlet Devices
#1	Discarded	818.30'	0.172 in/hr Exfiltration over Surface area
#2 Primary 818.30' 12.0" Round Culvert		818.30'	12.0" Round Culvert
	-		L= 30.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 818.30' / 817.30' S= 0.0333 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#3	Device 2	819.50'	4.0" Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Device 2	821.30'	3.9' long Sharp-Crested Rectangular Weir 2 End Contraction(s)


Discarded OutFlow Max=0.01 cfs @ 7.55 hrs HW=818.35' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.52 cfs @ 12.63 hrs HW=821.22' (Free Discharge)

2=Culvert (Passes 0.52 cfs of 4.65 cfs potential flow) **3=Orifice/Grate** (Orifice Controls 0.52 cfs @ 6.01 fps)

—4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 14P: UG 120

Volume

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 59

Summary for Pond 16P: DET 210

Inflow Area = 2.220 ac. 0.00% Impervious, Inflow Depth > 2.70" for 5-Year event 7.01 cfs @ 12.14 hrs, Volume= Inflow 0.499 af 1.31 cfs @ 12.60 hrs, Volume= 0.498 af, Atten= 81%, Lag= 27.8 min Outflow 1.26 cfs @ 12.60 hrs, Volume= Discarded = 0.496 af 0.05 cfs @ 12.60 hrs, Volume= 0.002 af Primary Routed to Link 18L: PR POA / B Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af

Routed to Link 18L : PR POA / B

Invert

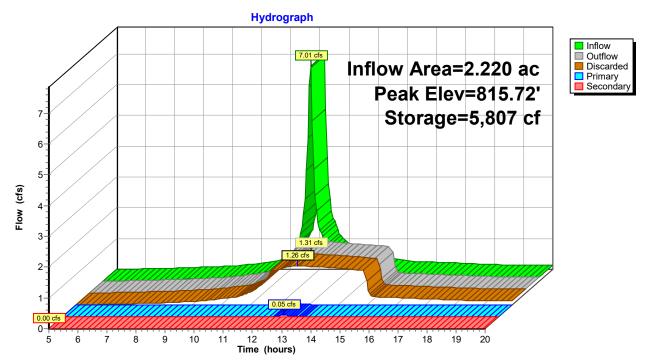
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 815.72' @ 12.60 hrs Surf.Area= 8,513 sf Storage= 5,807 cf

Plug-Flow detention time= 31.6 min calculated for 0.498 af (100% of inflow) Center-of-Mass det. time= 31.0 min (804.1 - 773.1)

Avail.Storage Storage Description

VOIGITIC	IIIVCIL	/ Wall.Old	rage clorage	Description		
#1	815.00'	28,8	06 cf Custom	Stage Data (Conic	c) Listed below (Re	ecalc)
Elevation		urf.Area	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)	
815.0	00	7,517	0	0	7,517	
816.0	00	8,907	8,202	8,202	8,944	
817.0	00	10,296	9,593	17,795	10,375	
818.0	00	11,741	11,011	28,806	11,867	
Device	Routing	Invert	Outlet Device	S		
#1	Discarded	815.00'	6.400 in/hr Ex	filtration over Sur	face area	_
#2	Primary	815.00'	12.0" Round	Culvert		
			L= 127.0' CF	PP, projecting, no h	eadwall, Ke= 0.90	00
			Inlet / Outlet I	nvert= 815.00' / 800	6.40' S= 0.0677 '/	" Cc= 0.900
			•	w Area= 0.79 sf		
#3	Device 2	815.60'		fice/Grate C= 0.6		
				ir flow at low heads		
#4	Device 2	816.80'		arp-Crested Recta		
#5	Secondary	817.00'				ested Rectangular W
			` ,	0.20 0.40 0.60 0.8		1.60 1.80
				00 3.50 4.00 4.50		
			, ,	n) 2.43 2.54 2.70		2.66 2.64 2.64
			2.64 2.65 2.6	65 2.66 2.66 2.68	2.70 2.74	

Discarded OutFlow Max=1.26 cfs @ 12.60 hrs HW=815.72' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.26 cfs)


Primary OutFlow Max=0.05 cfs @ 12.60 hrs HW=815.72' (Free Discharge)

-2=Culvert (Passes 0.05 cfs of 1.40 cfs potential flow)
-3=Orifice/Grate (Orifice Controls 0.05 cfs @ 1.20 fps)

-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=815.00' (Free Discharge)
5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 16P: DET 210

Volume

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 61

Summary for Pond 17P: DET 220

Inflow Area = 1.110 ac. 0.00% Impervious, Inflow Depth > 2.79" for 5-Year event 3.66 cfs @ 12.13 hrs, Volume= Inflow 0.258 af 1.06 cfs @ 12.37 hrs, Volume= 0.226 af, Atten= 71%, Lag= 14.6 min Outflow 0.25 cfs @ 12.37 hrs, Volume= 0.164 af Discarded = 0.81 cfs @ 12.37 hrs, Volume= 0.062 af Primary Routed to Link 18L: PR POA / B Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af

Routed to Link 18L: PR POA / B

Invert

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 802.63' @ 12.37 hrs Surf.Area= 2,507 sf Storage= 4,299 cf

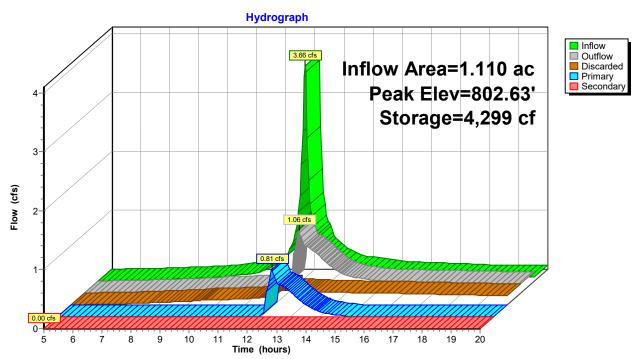
Plug-Flow detention time= 117.2 min calculated for 0.225 af (87% of inflow)

Avail.Storage Storage Description

Center-of-Mass det. time= 76.6 min (845.7 - 769.1)

#1	800.00'	8,87	75 cf Custom 9	Stage Data (Conic	:) Listed below (Rec	alc)
Elevatio		ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
800.0	00	879	0	0	879	
801.0	00	1,441	1,148	1,148	1,454	
802.0	00	2,039	1,731	2,880	2,070	
803.0	00	2,810	2,414	5,294	2,860	
804.0	00	4,412	3,581	8,875	4,476	
Device	Routing	Invert	Outlet Devices	i		
#1	Discarded	800.00'	4.278 in/hr Ext	filtration over Surf	face area	
#2	Primary	800.50'	15.0" Round (Culvert		
	·		Inlet / Outlet In		adwall, Ke= 0.900 0.00' S= 0.0128 '/'	Cc= 0.900
#3	Device 2	802.00'	6.0" Vert. Orifi	ce/Grate C= 0.6	00	
			Limited to weir	flow at low heads		
#4	Device 2	802.60'	14.0' long Sha	rp-Crested Rectai	ngular Weir 2 End	Contraction(s)
#5	Secondary	803.00'				sted Rectangular Weir
			` ,		0 1.00 1.20 1.40	1.60 1.80
				0 3.50 4.00 4.50		
					2.69 2.68 2.68 2.6	66 2.64 2.64
			2.64 2.65 2.69	5 2.66 2.66 2.68	2.70 2.74	

Discarded OutFlow Max=0.25 cfs @ 12.37 hrs HW=802.62' (Free Discharge) **-1=Exfiltration** (Exfiltration Controls 0.25 cfs)


Primary OutFlow Max=0.74 cfs @ 12.37 hrs HW=802.62' (Free Discharge)

-2=Culvert (Passes 0.74 cfs of 5.71 cfs potential flow) -3=Orifice/Grate (Orifice Controls 0.58 cfs @ 2.94 fps)

-4=Sharp-Crested Rectangular Weir (Weir Controls 0.16 cfs @ 0.50 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=800.00' (Free Discharge) -5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 17P: DET 220

Volume

Printed 9/13/2024

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 63

Summary for Pond 19P: PLUNGE POOL 120

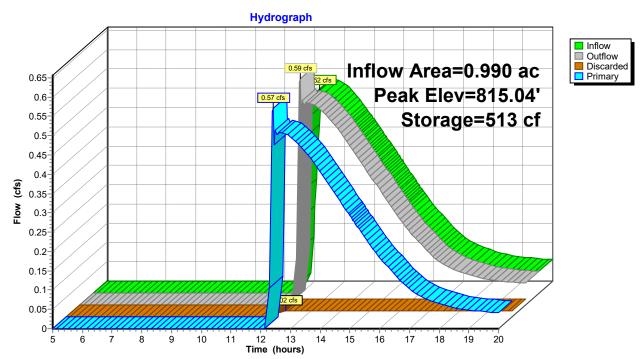
Inflow Area = 0.990 ac, 0.00% Impervious, Inflow Depth > 1.96" for 5-Year event
Inflow = 0.52 cfs @ 12.63 hrs, Volume= 0.162 af
Outflow = 0.59 cfs @ 12.41 hrs, Volume= 0.150 af, Atten= 0%, Lag= 0.0 min
Discarded = 0.57 cfs @ 12.40 hrs, Volume= 0.010 af
Primary = 0.57 cfs @ 12.41 hrs, Volume= 0.141 af

Routed to Link 15L: PR POA / A

Invert

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 815.04' @ 12.40 hrs Surf.Area= 766 sf Storage= 513 cf

Plug-Flow detention time= 30.8 min calculated for 0.150 af (93% of inflow) Center-of-Mass det. time= 11.0 min (879.6 - 868.6)


Avail Storage Description

VOIGITIC	IIIVCIL	/ Wall.Old	age clorage	Description	
#1	814.00'	1,51	7 cf Custom	Stage Data (Pri	smatic) Listed below (Recalc)
Elevation (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
814.0	00	223	0	0	
815.0	00	744	484	484	
816.0	00	1,322	1,033	1,517	
Device	Routing	Invert	Outlet Devices	3	
#1	Discarded	814.00'	0.860 in/hr Ex	filtration over S	Surface area
#2	Primary	815.00'	Head (feet) 0. 2.00 2.50 3.0 Coef. (English	.20 0.40 0.60 (00 3.50 4.00 4.	70 2.69 2.68 2.68 2.66 2.64 2.64

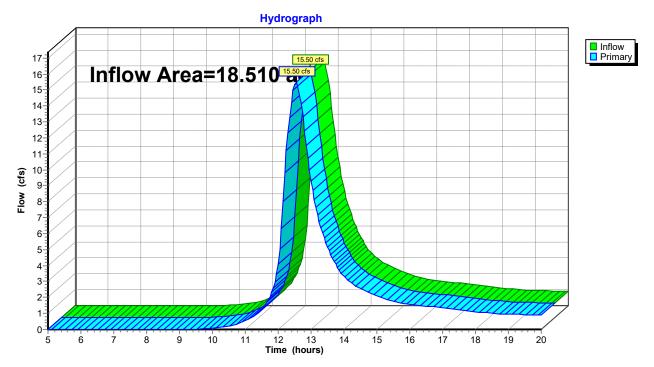
Discarded OutFlow Max=0.02 cfs @ 12.40 hrs HW=815.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.53 cfs @ 12.41 hrs HW=815.04' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 0.53 cfs @ 0.47 fps)

Pond 19P: PLUNGE POOL 120

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

18.510 ac, 0.00% Impervious, Inflow Depth > 1.51" for 5-Year event Inflow Area =


Inflow 2.327 af

15.50 cfs @ 12.55 hrs, Volume= 15.50 cfs @ 12.55 hrs, Volume= 2.327 af, Atten= 0%, Lag= 0.0 min Primary

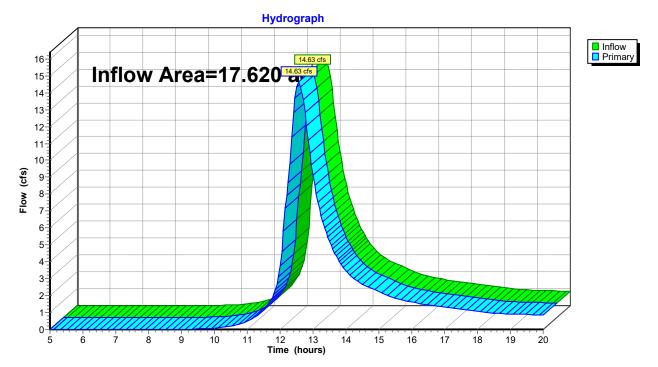
Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 4L: EX POA / A

Summary for Link 4L: EX POA / A

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Summary for Link 15L: PR POA / A


Inflow Area =

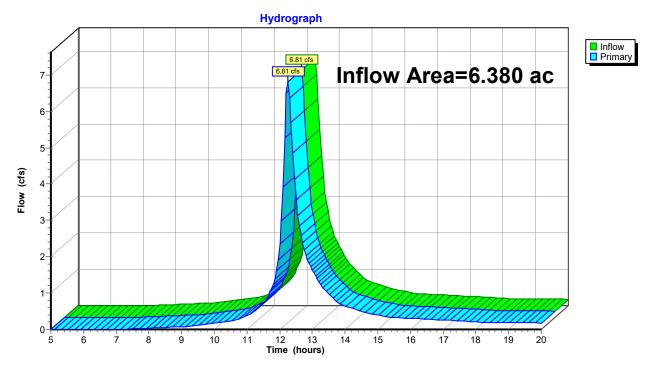
Inflow =

17.620 ac, 0.00% Impervious, Inflow Depth > 1.52" for 5-Year event 14.63 cfs @ 12.56 hrs, Volume= 2.238 af 14.63 cfs @ 12.56 hrs, Volume= 2.238 af, Atten= 0%, Lag= 0.0 in the control of 2.238 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 15L: PR POA / A

Summary for Link 18L: PR POA / B


Inflow Area =

Inflow

6.380 ac, 0.00% Impervious, Inflow Depth > 1.20" for 5-Year event 6.81 cfs @ 12.25 hrs, Volume= 0.636 af 6.81 cfs @ 12.25 hrs, Volume= 0.636 af, Atten= 0%, Lag= 0.0 in the control of the 0.636 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 18L: PR POA / B

Summary for Subcatchment 1S: EXWS-10


Runoff = 5.62 cfs @ 12.23 hrs, Volume= 0.491 af, Depth> 2.39"

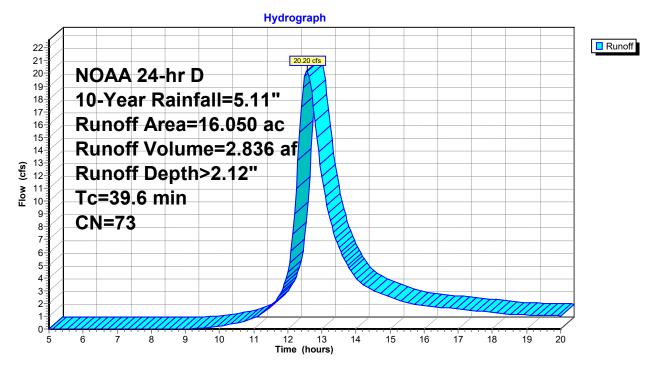
Routed to Link 4L: EX POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 10-Year Rainfall=5.11"

	Area	(ac)	CN	Desc	cription		
*	2.	460	76				
	2.	460		100.	00% Pervi	ous Area	
		Lengt			,	. ,	Description
_	(min)	(fee	τ)	(ft/ft)	(ft/sec)	(cfs)	
	14.2						Direct Entry,

Subcatchment 1S: EXWS-10

Summary for Subcatchment 2S: EXWS-11


Runoff = 20.20 cfs @ 12.56 hrs, Volume= 2.836 af, Depth> 2.12"

Routed to Link 4L: EX POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 10-Year Rainfall=5.11"

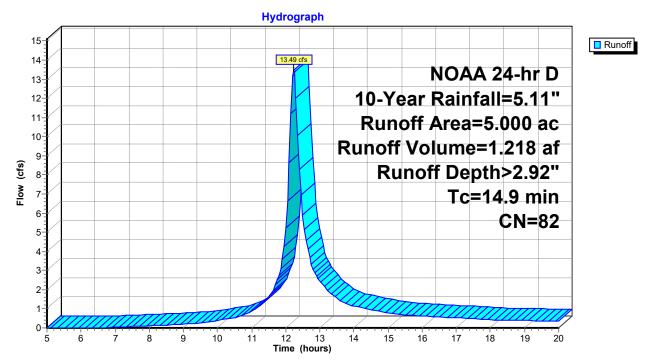
	Area	(ac)	CN	Desc	cription		
*	16.	050	73				
	16.050 10			100.	00% Pervi	ous Area	
	Тс	_		•	•		Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	39.6						Direct Entry,

Subcatchment 2S: EXWS-11

1.218 af, Depth> 2.92"

Runoff

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

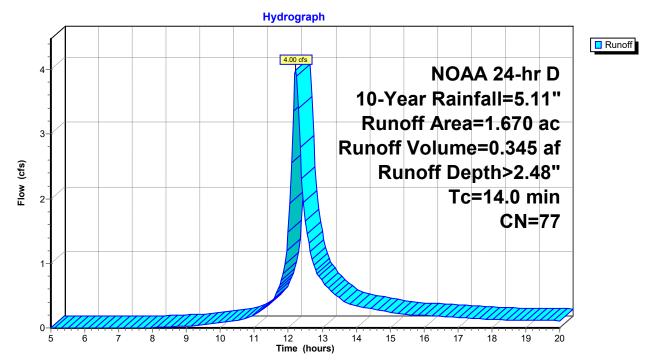

13.49 cfs @ 12.23 hrs, Volume=

Summary for Subcatchment 5S: EXWS-20 / B

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 10-Year Rainfall=5.11"

_	Area	(ac)	CN	Desc	cription		
*	5.	.000	82				
	5.000 100.00% Pervious Area				00% Pervi	ous Area	
	Тс	Lengt	:h :	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	14.9						Direct Entry,

Subcatchment 5S: EXWS-20 / B


Summary for Subcatchment 6S: EXWS-30 / C

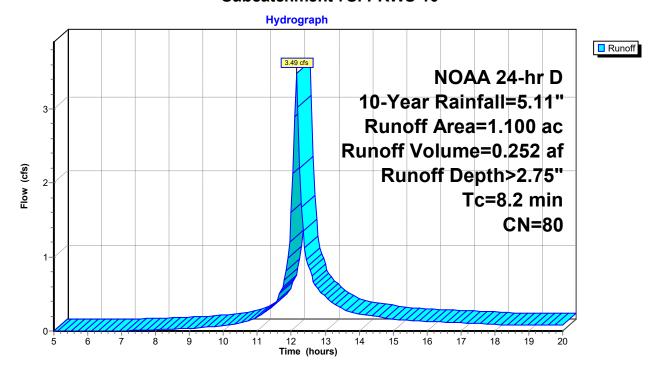
Runoff = 4.00 cfs @ 12.22 hrs, Volume= 0.345 af, Depth> 2.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 10-Year Rainfall=5.11"

_	Area	(ac)	CN	Desc	cription		
*	1.	670	77				
	1.	1.670 100.00% Pervious Area				ous Area	
	Tc	Leng			•	Capacity	Description
_	(min)	(fee	:()	(ft/ft)	(ft/sec)	(cfs)	Direct Entry
	14.0						Direct Entry,

Subcatchment 6S: EXWS-30 / C

Summary for Subcatchment 7S: PRWS-10


Runoff = 3.49 cfs @ 12.15 hrs, Volume= 0.252 af, Depth> 2.75"

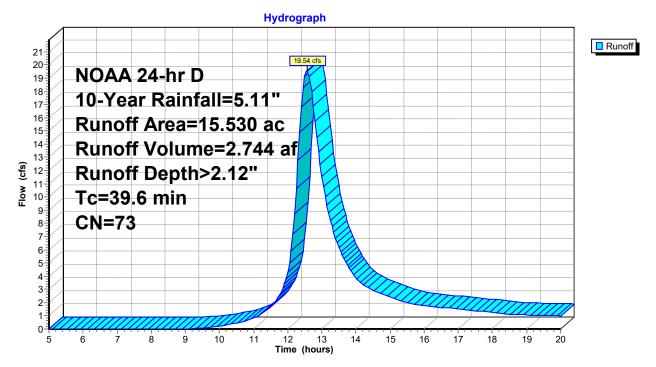
Routed to Link 15L: PR POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 10-Year Rainfall=5.11"

	Area	(ac)	CN	Desc	cription		
*	1.	100	80				
	1.100 100.00% Pervious Area				00% Pervi	ous Area	
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	8.2						Direct Entry,

Subcatchment 7S: PRWS-10

Summary for Subcatchment 8S: PRWS-11


Runoff = 19.54 cfs @ 12.56 hrs, Volume= 2.744 af, Depth> 2.12"

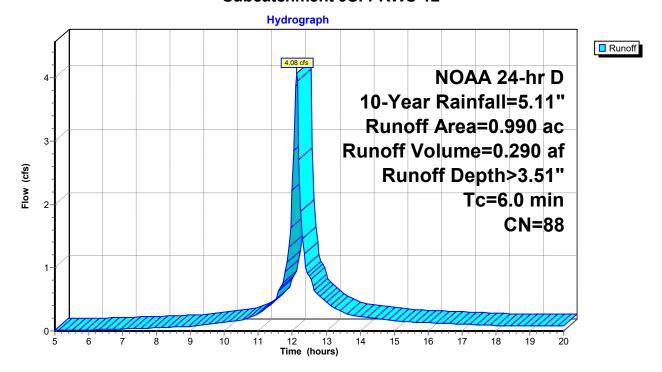
Routed to Link 15L: PR POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 10-Year Rainfall=5.11"

	Area	(ac)	CN	Desc	cription		
*	15.	530	73				
	15.	530		100.	00% Pervi	ous Area	
	Тс	_			•		Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	39.6						Direct Entry,

Subcatchment 8S: PRWS-11

Summary for Subcatchment 9S: PRWS-12


Runoff = 4.08 cfs @ 12.13 hrs, Volume= 0.290 af, Depth> 3.51"

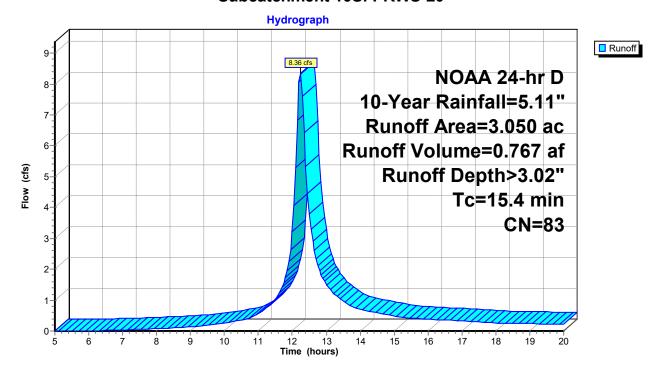
Routed to Pond 14P: UG 120

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 10-Year Rainfall=5.11"

	Area	(ac)	CN	Desc	cription		
*	0.	990	88				
	0.990			100.00% Pervious Area			
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry,

Subcatchment 9S: PRWS-12

Summary for Subcatchment 10S: PRWS-20


Runoff = 8.36 cfs @ 12.24 hrs, Volume= 0.767 af, Depth> 3.02"

Routed to Link 18L: PR POA / B

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 10-Year Rainfall=5.11"

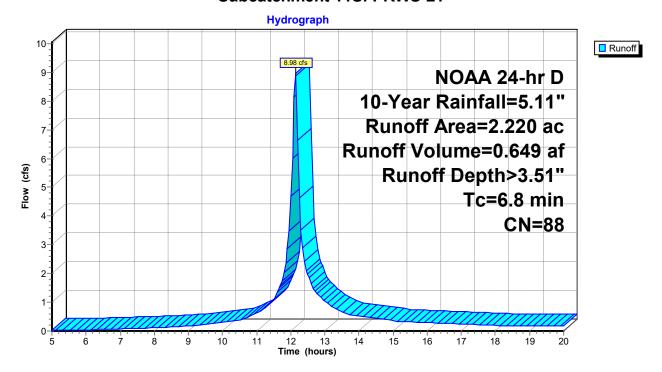
	Area	(ac)	CN	Desc	cription		
*	3.	050	83				
	3.	050		100.	00% Pervi	ous Area	
	Тс	Leng	th	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	15.4						Direct Entry,

Subcatchment 10S: PRWS-20

Printed 9/13/2024

Page 76

Summary for Subcatchment 11S: PRWS-21


Runoff = 8.98 cfs @ 12.14 hrs, Volume= 0.649 af, Depth> 3.51"

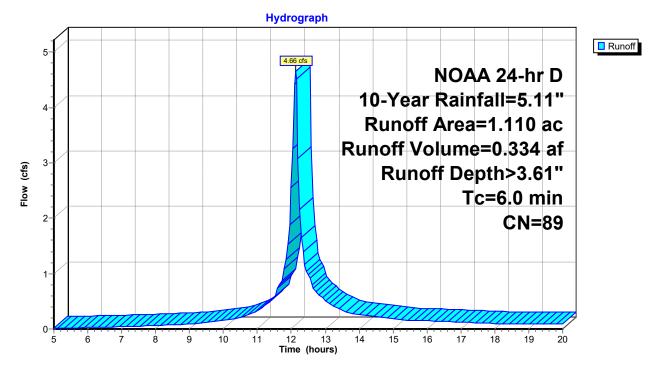
Routed to Pond 16P: DET 210

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 10-Year Rainfall=5.11"

	Area	(ac)	CN	Desc	cription		
*	2.	220	88				
	2.220			100.00% Pervious Area			
		Leng		•	,	. ,	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	6.8						Direct Entry,

Subcatchment 11S: PRWS-21

Summary for Subcatchment 12S: PRWS-22

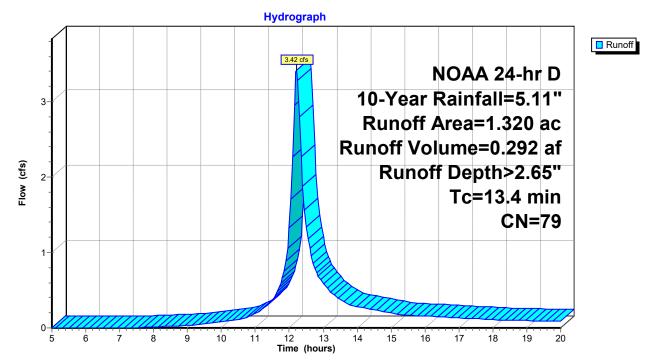

Runoff = 4.66 cfs @ 12.13 hrs, Volume= 0.334 af, Depth> 3.61"

Routed to Pond 17P: DET 220

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 10-Year Rainfall=5.11"

	Area	(ac)	CN	Desc	cription		
*	1.	110	89				
	1.	110		100.	00% Pervi	ous Area	
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	•
	6.0						Direct Entry,

Subcatchment 12S: PRWS-22


Summary for Subcatchment 13S: PRWS-30 / C

Runoff = 3.42 cfs @ 12.21 hrs, Volume= 0.292 af, Depth> 2.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 10-Year Rainfall=5.11"

	Area	(ac)	CN	Desc	cription		
7	· 1.	.320	79				
	1.320 100.00°				00% Pervi	ous Area	
	Тс	Lengtl	h S	Slope	Velocity	Capacity	Description
	(min)	(feet	t)	(ft/ft)	(ft/sec)	(cfs)	
	13.4						Direct Entry.

Subcatchment 13S: PRWS-30 / C

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 79

Summary for Pond 14P: UG 120

Inflow Area =	0.990 ac,	0.00% Impervious,	Inflow Depth > 3.5	51" for 10-Year event
Inflow =	4.08 cfs @	12.13 hrs, Volume=	0.290 af	
Outflow =	2.14 cfs @	12.25 hrs, Volume=	0.236 af,	Atten= 47%, Lag= 7.3 min
Discarded =	0.01 cfs @	6.70 hrs, Volume=	0.009 af	•
Primary =	2.13 cfs @	12.25 hrs, Volume=	0.227 af	
Routed to Pond	19P · PI I IN	IGE POOL 120		

Routed to Pond 19P: PLUNGE POOL 120

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 821.55' @ 12.25 hrs Surf.Area= 0.044 ac Storage= 0.125 af

Plug-Flow detention time= 136.1 min calculated for 0.235 af (81% of inflow) Center-of-Mass det. time= 83.6 min (849.4 - 765.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	818.30'	0.000 af	24.00'W x 80.00'L x 4.67'H Field A
			0.206 af Overall - 0.206 af Embedded = 0.000 af x 40.0% Voids
#2A	818.30'	0.155 af	retain_it retain_it 4.0' x 30 Inside #1
			Inside= 84.0"W x 48.0"H => 28.87 sf x 8.00'L = 230.9 cf
			Outside= 96.0"W x 56.0"H => 37.33 sf x 8.00'L = 298.7 cf
			3 Rows adjusted for 196.3 cf perimeter wall
		0.155 af	Total Available Storage

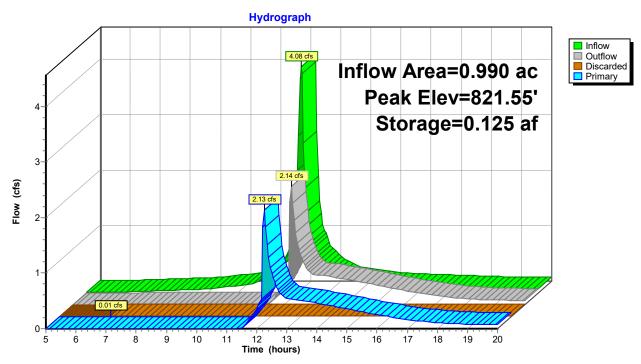
Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices			
#1	Discarded	818.30'	0.172 in/hr Exfiltration over Surface area			
#2	Primary	818.30'	12.0" Round Culvert			
	•		L= 30.0' CPP, projecting, no headwall, Ke= 0.900			
			Inlet / Outlet Invert= 818.30' / 817.30' S= 0.0333 '/' Cc= 0.900			
			n= 0.012, Flow Area= 0.79 sf			
#3	Device 2	819.50'	4.0" Vert. Orifice/Grate C= 0.600			
			Limited to weir flow at low heads			
#4	Device 2	821.30'	3.9' long Sharp-Crested Rectangular Weir 2 End Contraction(s)			

Discarded OutFlow Max=0.01 cfs @ 6.70 hrs HW=818.35' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=2.13 cfs @ 12.25 hrs HW=821.55' (Free Discharge)

2=Culvert (Passes 2.13 cfs of 4.95 cfs potential flow) **3=Orifice/Grate** (Orifice Controls 0.58 cfs @ 6.60 fps)


-4=Sharp-Crested Rectangular Weir (Weir Controls 1.55 cfs @ 1.63 fps)

Prepared by SLR International Corporation
HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Printed 9/13/2024

Page 80

Pond 14P: UG 120

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 81

Summary for Pond 16P: DET 210

Inflow Area = 2.220 ac. 0.00% Impervious, Inflow Depth > 3.51" for 10-Year event 8.98 cfs @ 12.14 hrs, Volume= Inflow 0.649 af 1.68 cfs @ 12.59 hrs, Volume= 0.649 af, Atten= 81%, Lag= 27.4 min Outflow 1.32 cfs @ 12.59 hrs, Volume= Discarded = 0.618 af 0.36 cfs @ 12.59 hrs, Volume= 0.031 af Primary Routed to Link 18L: PR POA / B Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af Routed to Link 18L: PR POA / B

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 816.00' @ 12.59 hrs Surf.Area= 8,902 sf Storage= 8,170 cf

Plug-Flow detention time= 40.4 min calculated for 0.649 af (100% of inflow) Center-of-Mass det. time= 39.9 min (806.4 - 766.5)

Invert	Avail.Sto	rage	Storage l	Description			
815.00'	28,80	06 cf	Custom	Stage Data (Co	nic) Listed	below (Recald	;)
Surf.Area				Cum.Store			
		(00.10.10	0	0			
0 8,907		;	3,202	8,202	8	3,944	
10,2	296	,	9,593	17,795		•	
11,7	7 41	1	1,011	28,806	1.	1,867	
ıting	Invert	Outle	t Devices	S			
carded	815.00'	6.400	in/hr Ex	filtration over S	Surface are	а	
Primary 815.0		12.0"	Round	Culvert			
						= 0.0677 '/' C	c= 0.900
			•				
rice 2	815.60'						
.: O	040 001					Wain 0 Fm 4 0	(-)
ondary	817.00						
							00 1.00
							264 264
							2.07 2.0 7
	Surf.Ai (sq 7,5 8,9 10,2 11,7 uting	Surf.Area (sq-ft) 7,517 8,907 10,296 11,741 uting Invert carded 815.00' nary 815.00'	Surf.Area Inc.: (sq-ft) (cubic: 7,517 8,907 10,296 11,741 1: ting Invert Outle carded 815.00' 6.400 nary 815.00' 12.0" L= 12 Inlet / n= 0.0 rice 2 816.80' 14.0' rice 2 816.80' 14.0' Head 2.00 Coef.	Surf.Area Inc.Store (sq-ft) (cubic-feet) 7,517 0 8,907 8,202 10,296 9,593 11,741 11,011 Iting Invert Outlet Devices carded 815.00' 6.400 in/hr Extended L= 127.0' CF Inlet / Outlet In n= 0.012, Flore ice 2 Sicce 2 815.60' 6.0" Vert. Oriflet in the condary S15.00' 14.0' long Shape in the condary S15.00' 10.0' long + 3 Head (feet) 0 2.00 2.50 3.0 Coef. (English	Surf.Area Inc.Store Cum.Store (sq-ft) (cubic-feet) (cubic-feet) 7,517 0 0 8,907 8,202 8,202 10,296 9,593 17,795 11,741 11,011 28,806 Iting Invert Outlet Devices Carded 815.00' 6.400 in/hr Exfiltration over \$1,000 carded	Surf.Area Inc.Store Cum.Store Wet (sq-ft) (cubic-feet) (cubic-feet) (7,517 0 0 0 7,517 8,907 8,202 8,202 8,202 10,296 9,593 17,795 10,11,741 11,011 28,806 17,011,741 11,011 28,806 17,011,741 11,011 28,806 17,011,741 12,011 28,806 17,011,741 12,011 28,806 17,011,741 12,011 28,806 17,011,741 12,011 28,806 17,011,741 11,011 28,806 17,011 28,806 17,011 2	Surf.Area

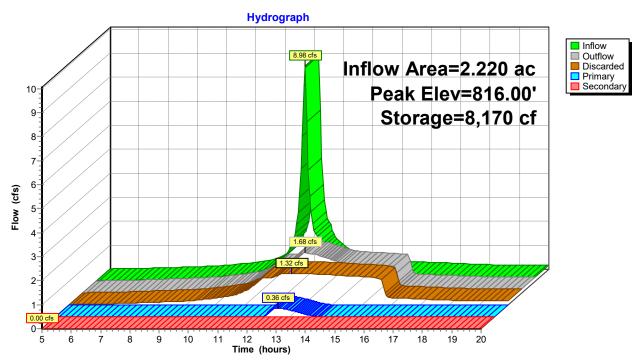
Discarded OutFlow Max=1.32 cfs @ 12.59 hrs HW=816.00' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.32 cfs)

Primary OutFlow Max=0.36 cfs @ 12.59 hrs HW=816.00' (Free Discharge)

-2=Culvert (Passes 0.36 cfs of 2.11 cfs potential flow) **-3=Orifice/Grate** (Orifice Controls 0.36 cfs @ 2.14 fps)

-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=815.00' (Free Discharge)
5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)


Prepared by SLR International Corporation

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Printed 9/13/2024

Page 82

Pond 16P: DET 210

Volume

Invert

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 83

Summary for Pond 17P: DET 220

Inflow Area = 1.110 ac. 0.00% Impervious, Inflow Depth > 3.61" for 10-Year event 4.66 cfs @ 12.13 hrs, Volume= Inflow 0.334 af 3.69 cfs @ 12.20 hrs, Volume= 0.294 af, Atten= 21%, Lag= 4.6 min Outflow 0.26 cfs @ 12.21 hrs, Volume= Discarded = 0.178 af 3.43 cfs @ 12.20 hrs, Volume= 0.116 af Primary Routed to Link 18L: PR POA / B Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af Routed to Link 18L: PR POA / B

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 802.75' @ 12.21 hrs Surf.Area= 2,609 sf Storage= 4,627 cf

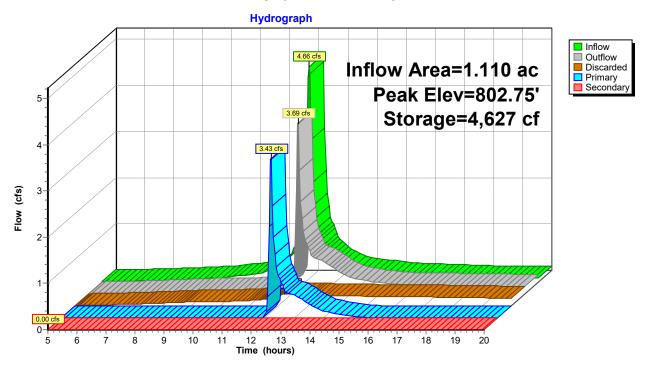
Plug-Flow detention time= 98.7 min calculated for 0.293 af (88% of inflow) Center-of-Mass det. time= 58.6 min (821.5 - 762.9)

Avail.Storage Storage Description

#1	800.00'	8,87	75 cf Custom	Stage Data (Conic)	Listed below (Reca	alc)
Elevation	Elevation Surf.Area		Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)	
800.0	00	879	0	0	879	
801.0	00	1,441	1,148	1,148	1,454	
802.0		2,039	1,731	2,880	2,070	
803.0		2,810	2,414	5,294	2,860	
804.0	00	4,412	3,581	8,875	4,476	
Device	Routing	Invert	Outlet Devices	S		
#1	Discarded	800.00'	4.278 in/hr Ex	filtration over Surfa	ace area	
#2	Primary	800.50'	15.0" Round	Culvert		
	·		Inlet / Outlet In	', projecting, no hea nvert= 800.50' / 800. w Area= 1.23 sf		Cc= 0.900
#3	Device 2	802.00'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads			
#4	Device 2	802.60'		rp-Crested Rectan	gular Weir 2 End	Contraction(s)
# 5	Secondary	803.00'	10.0' long + 3 Head (feet) 0. 2.00 2.50 3.0 Coef. (English		readth Broad-Cres 1.00 1.20 1.40 1 5.00 5.50 2.69 2.68 2.68 2.6	ted Rectangular Weir .60 1.80

Discarded OutFlow Max=0.26 cfs @ 12.21 hrs HW=802.75' (Free Discharge) **-1=Exfiltration** (Exfiltration Controls 0.26 cfs)

Primary OutFlow Max=3.31 cfs @ 12.20 hrs HW=802.75' (Free Discharge)


-2=Culvert (Passes 3.31 cfs of 5.95 cfs potential flow) -3=Orifice/Grate (Orifice Controls 0.67 cfs @ 3.40 fps)

-4=Sharp-Crested Rectangular Weir (Weir Controls 2.65 cfs @ 1.27 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=800.00' (Free Discharge) -5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 9/13/2024 Page 84

Pond 17P: DET 220

Printed 9/13/2024

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

<u>Page 85</u>

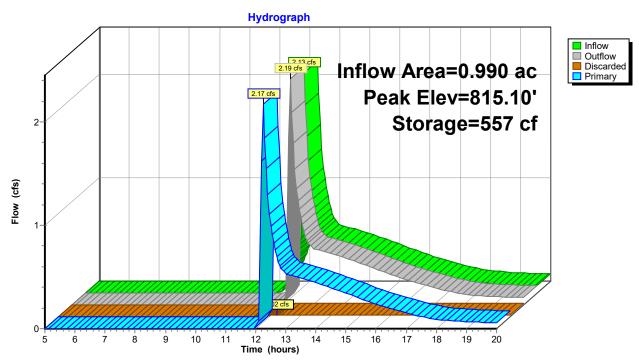
Summary for Pond 19P: PLUNGE POOL 120

Inflow Area = 0.990 ac, 0.00% Impervious, Inflow Depth > 2.76" for 10-Year event
Inflow = 2.13 cfs @ 12.25 hrs, Volume= 0.227 af
Outflow = 2.19 cfs @ 12.26 hrs, Volume= 0.216 af, Atten= 0%, Lag= 0.4 min
Discarded = 0.02 cfs @ 12.26 hrs, Volume= 0.010 af
Primary = 2.17 cfs @ 12.26 hrs, Volume= 0.206 af

Routed to Link 15L: PR POA / A

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 815.10' @ 12.26 hrs Surf.Area= 799 sf Storage= 557 cf

Plug-Flow detention time= 22.8 min calculated for 0.215 af (95% of inflow) Center-of-Mass det. time= 7.7 min (859.9 - 852.2)


Volume	Invert	Avail.	Storage	Storage	e Description	
#1	814.00'		1,517 cf	Custor	n Stage Data (Pr	ismatic) Listed below (Recalc)
Elevation (feet)	Surf	Area sq-ft)		Store c-feet)	Cum.Store (cubic-feet)	
814.00		223		0	0	
815.00		744		484	484	
816.00	1	,322		1,033	1,517	

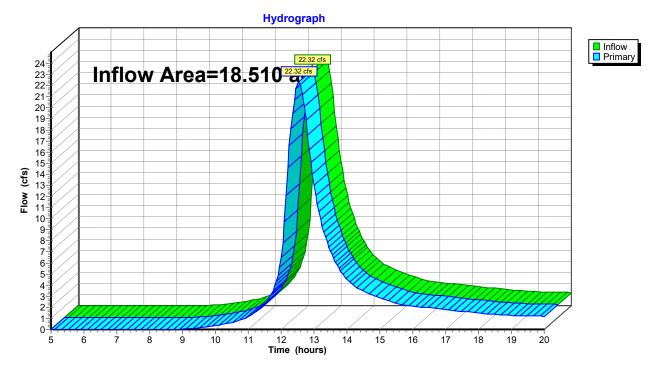
Device	Routing	Invert	Outlet Devices
#1	Discarded	814.00'	0.860 in/hr Exfiltration over Surface area
#2	Primary	815.00'	30.0' long + 3.0 '/' SideZ x 8.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80
			2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64
			2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74

Discarded OutFlow Max=0.02 cfs @ 12.26 hrs HW=815.09' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=2.12 cfs @ 12.26 hrs HW=815.09' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 2.12 cfs @ 0.74 fps)

Pond 19P: PLUNGE POOL 120

Summary for Link 4L: EX POA / A


18.510 ac, 0.00% Impervious, Inflow Depth > 2.16" for 10-Year event Inflow Area =

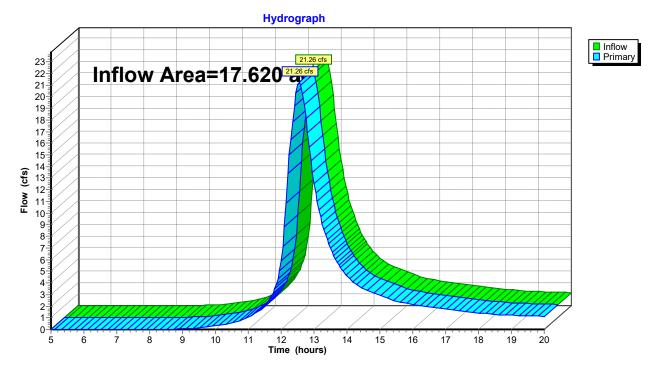
Inflow 3.327 af

22.32 cfs @ 12.54 hrs, Volume= 22.32 cfs @ 12.54 hrs, Volume= 3.327 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 4L: EX POA / A

Summary for Link 15L: PR POA / A


17.620 ac, 0.00% Impervious, Inflow Depth > 2.18" for 10-Year event 21.26 cfs @ 12.55 hrs, Volume= 3.202 af Inflow Area =

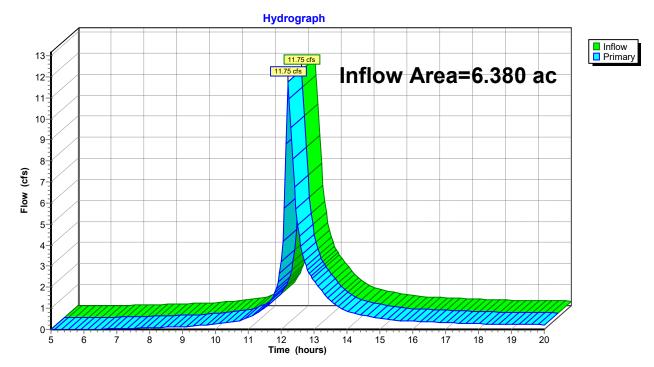
Inflow

21.26 cfs @ 12.55 hrs, Volume= 3.202 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 15L: PR POA / A

Summary for Link 18L: PR POA / B

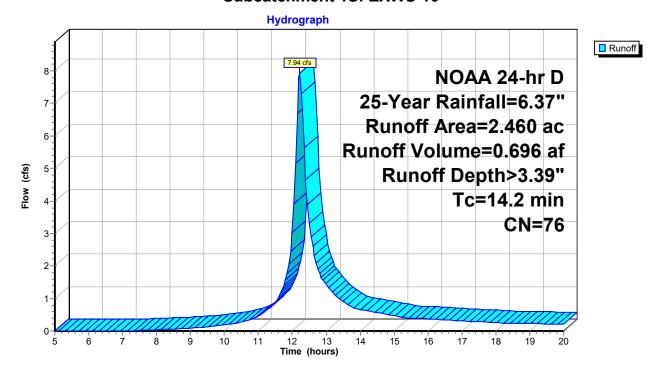

Inflow Area =

Inflow =

6.380 ac, 0.00% Impervious, Inflow Depth > 1.72" for 10-Year event 11.75 cfs @ 12.22 hrs, Volume= 0.913 af 11.75 cfs @ 12.22 hrs, Volume= 0.913 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 18L: PR POA / B


Summary for Subcatchment 1S: EXWS-10

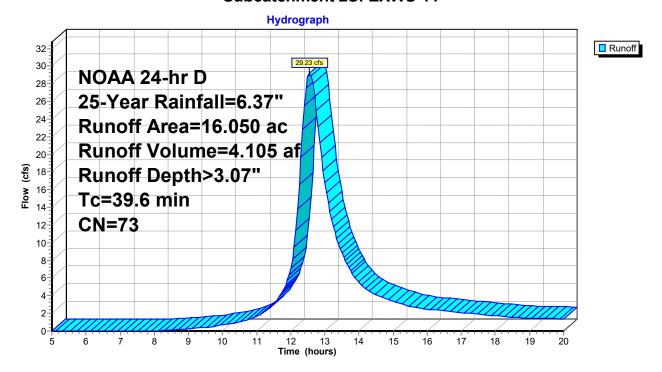
Runoff = 7.94 cfs @ 12.22 hrs, Volume= 0.696 af, Depth> 3.39" Routed to Link 4L : EX POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 25-Year Rainfall=6.37"

	Area	(ac)	CN	Desc	cription		
*	2.	460	76				
	2.	460		100.00% Pervious Area			
		Lengt			,	. ,	Description
_	(min)	(fee	τ)	(ft/ft)	(ft/sec)	(cfs)	
	14.2						Direct Entry,

Subcatchment 1S: EXWS-10

Summary for Subcatchment 2S: EXWS-11


Runoff = 29.23 cfs @ 12.55 hrs, Volume= 4.105 af, Depth> 3.07"

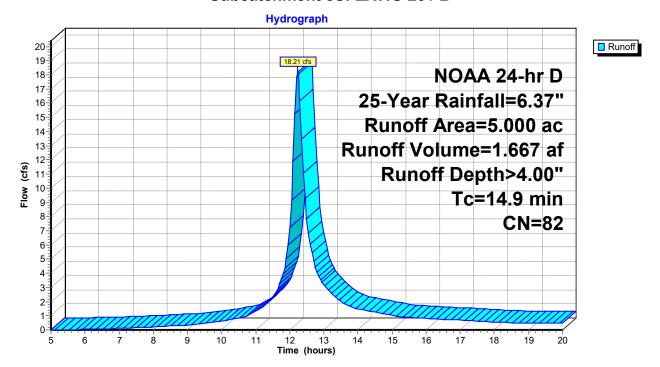
Routed to Link 4L: EX POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 25-Year Rainfall=6.37"

	Area	(ac)	CN	Desc	cription		
*	16.	050	73				
	16.	050		100.0	00% Pervi	ous Area	
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	39.6						Direct Entry,

Subcatchment 2S: EXWS-11

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC


Runoff = 18.21 cfs @ 12.23 hrs, Volume= 1.667 af, Depth> 4.00"

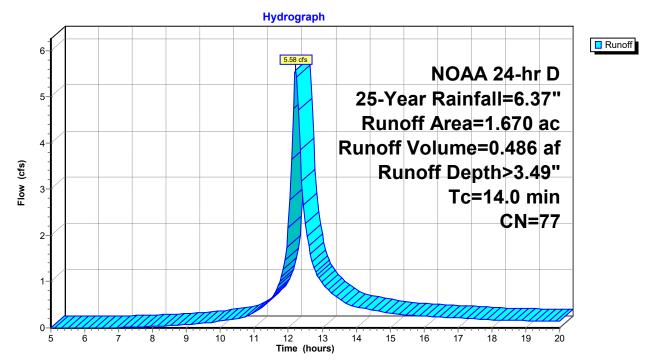
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 25-Year Rainfall=6.37"

Summary for Subcatchment 5S: EXWS-20 / B

	Area	(ac)	CN	Desc	ription		
7	5.	.000	82				
	5.	.000		100.0	00% Pervi	ous Area	
	Тс	Lengtl			•	Capacity	Description
_	(min)	(feet	:) (1	ft/ft)	(ft/sec)	(cfs)	
	14.9						Direct Entry.

Subcatchment 5S: EXWS-20 / B

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC


Summary for Subcatchment 6S: EXWS-30 / C

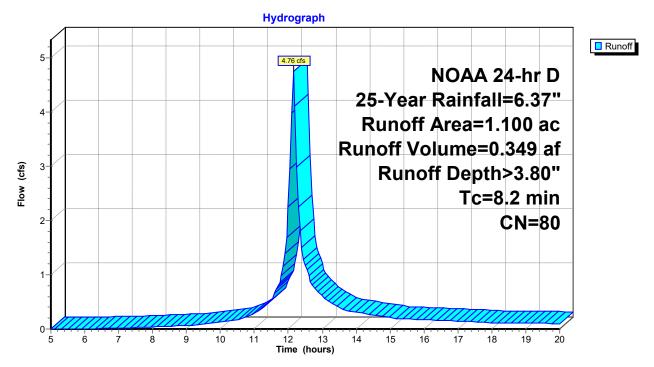
Runoff = 5.58 cfs @ 12.22 hrs, Volume= 0.486 af, Depth> 3.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 25-Year Rainfall=6.37"

Area	(ac)	CN D	escription		
* 1.	.670	77			
1.	.670	10	00.00% Pervi	ious Area	
Тс	Length	n Slop	e Velocity	Capacity	Description
(min)	(feet) (ft/1	t) (ft/sec)	(cfs)	
14.0					Direct Entry.

Subcatchment 6S: EXWS-30 / C

Summary for Subcatchment 7S: PRWS-10


Runoff = 4.76 cfs @ 12.15 hrs, Volume= 0.349 af, Depth> 3.80"

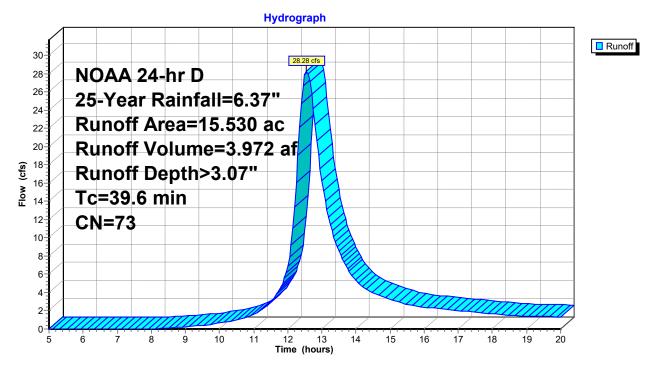
Routed to Link 15L: PR POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 25-Year Rainfall=6.37"

	Area	(ac)	CN	Desc	cription		
*	1.	100	80				
	1.100 100.00% Pervious Area						
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	8.2						Direct Entry,

Subcatchment 7S: PRWS-10

Summary for Subcatchment 8S: PRWS-11


Runoff = 28.28 cfs @ 12.55 hrs, Volume= 3.972 af, Depth> 3.07"

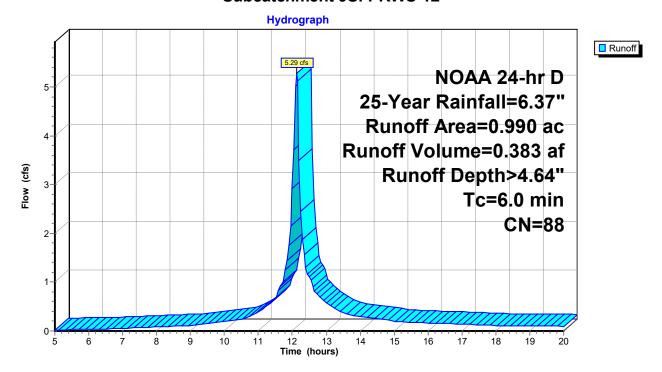
Routed to Link 15L: PR POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 25-Year Rainfall=6.37"

	Area	(ac)	CN	Desc	cription		
*	15.	530	73				
	15.	530		100.0	00% Pervi	ous Area	
	Tc (min)	Lengt (fee		lope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	39.6						Direct Entry,

Subcatchment 8S: PRWS-11

Summary for Subcatchment 9S: PRWS-12


Runoff = 5.29 cfs @ 12.13 hrs, Volume= 0.383 af, Depth> 4.64"

Routed to Pond 14P: UG 120

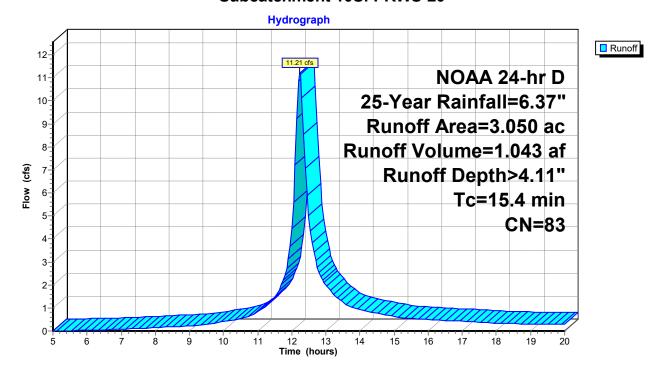
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 25-Year Rainfall=6.37"

	Area	(ac)	CN	Desc	cription		
*	0.	990	88				
	0.990 100.				00% Pervi	ous Area	
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry,

Subcatchment 9S: PRWS-12

9 10.20-4a 3/11 00 100 @ 2020 TrydrooAb Contware Conditions LEO

Runoff = 11.21 cfs @ 12.24 hrs, Volume= 1.043 af, Depth> 4.11"


Routed to Link 18L: PR POA / B

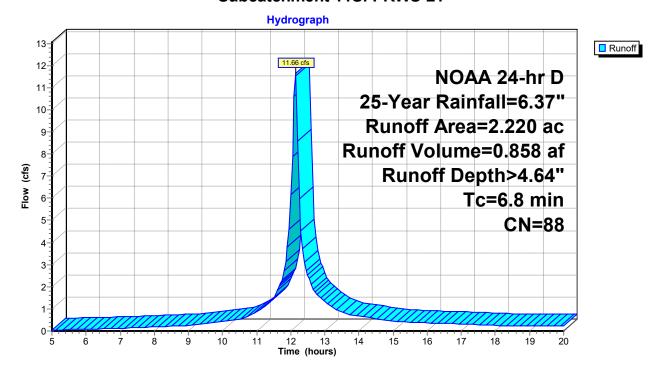
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 25-Year Rainfall=6.37"

Summary for Subcatchment 10S: PRWS-20

	Area	(ac)	CN	Desc	cription		
*	3.	050	83				
	3.	050		100.00% Pervious Area			
		Lengt			,	. ,	Description
_	(min)	(fee	τ)	(ft/ft)	(ft/sec)	(cfs)	
	15.4						Direct Entry,

Subcatchment 10S: PRWS-20

Summary for Subcatchment 11S: PRWS-21


Runoff = 11.66 cfs @ 12.14 hrs, Volume= 0.858 af, Depth> 4.64"

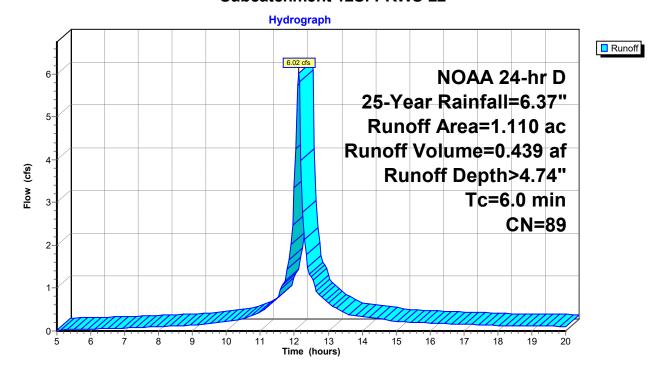
Routed to Pond 16P: DET 210

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 25-Year Rainfall=6.37"

	Area	(ac)	CN	Desc	cription		
*	2.	220	88				
	2.	220		100.	00% Pervi	ous Area	
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	6.8						Direct Entry,

Subcatchment 11S: PRWS-21

Summary for Subcatchment 12S: PRWS-22

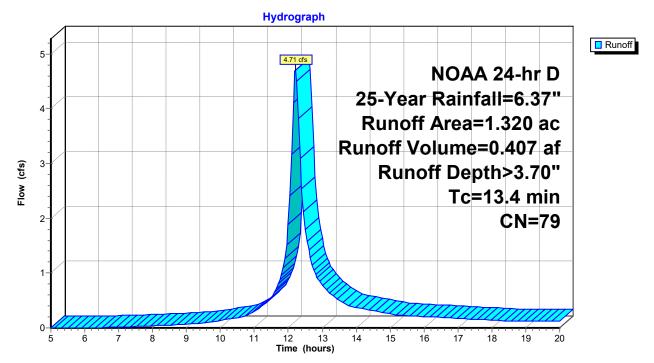

Runoff = 6.02 cfs @ 12.13 hrs, Volume= 0.439 af, Depth> 4.74"

Routed to Pond 17P: DET 220

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 25-Year Rainfall=6.37"

	Area	(ac)	CN	Desc	cription		
*	1.	110	89				
	1.110 100.00% Pervious Area						
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	•
	6.0						Direct Entry,

Subcatchment 12S: PRWS-22


Summary for Subcatchment 13S: PRWS-30 / C

Runoff = 4.71 cfs @ 12.21 hrs, Volume= 0.407 af, Depth> 3.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 25-Year Rainfall=6.37"

_	Area	(ac)	CN	Desc	cription		
*	1.	320	79				
	1.	320		100.	00% Pervi	ous Area	
	Тс	Lengt	:h :	Slope	Velocity	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	13.4						Direct Entry,

Subcatchment 13S: PRWS-30 / C

Printed 9/13/2024

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 101

Summary for Pond 14P: UG 120

Inflow Area =	0.990 ac,	0.00% Impervious, Inflow D	epth > 4.64" for 25-Year event							
Inflow =	5.29 cfs @	12.13 hrs, Volume=	0.383 af							
Outflow =	4.67 cfs @	12.17 hrs, Volume=	0.328 af, Atten= 12%, Lag= 2.6	min						
Discarded =	0.01 cfs @	6.00 hrs, Volume=	0.009 af							
Primary =	4.66 cfs @	12.17 hrs, Volume=	0.319 af							
Routed to Pond 19P : PLUNGE POOL 120										

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 821.78' @ 12.17 hrs Surf.Area= 0.044 ac Storage= 0.134 af

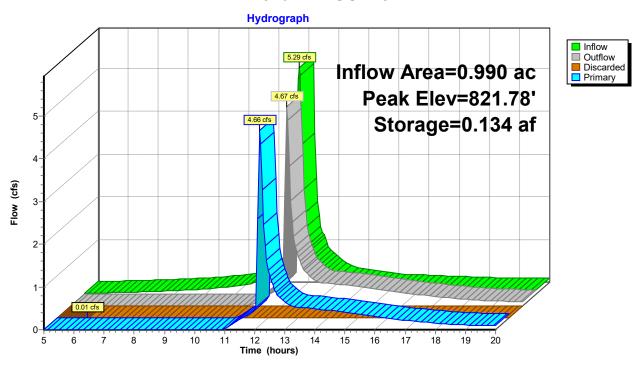
Plug-Flow detention time= 119.0 min calculated for 0.328 af (86% of inflow) Center-of-Mass det. time= 73.8 min (833.4 - 759.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	818.30'	0.000 af	24.00'W x 80.00'L x 4.67'H Field A
			0.206 af Overall - 0.206 af Embedded = 0.000 af x 40.0% Voids
#2A	818.30'	0.155 af	retain_it retain_it 4.0' x 30 Inside #1
			Inside= 84.0"W x 48.0"H => 28.87 sf x 8.00'L = 230.9 cf
			Outside= 96.0"W x 56.0"H => 37.33 sf x 8.00'L = 298.7 cf
			3 Rows adjusted for 196.3 cf perimeter wall
		0.155 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	818.30'	0.172 in/hr Exfiltration over Surface area
#2	Primary	818.30'	12.0" Round Culvert
	•		L= 30.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 818.30' / 817.30' S= 0.0333 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#3	Device 2	819.50'	4.0" Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Device 2	821.30'	3.9' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Discarded OutFlow Max=0.01 cfs @ 6.00 hrs HW=818.35' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.01 cfs)


Primary OutFlow Max=4.41 cfs @ 12.17 hrs HW=821.75' (Free Discharge) **-2=Culvert** (Passes 4.41 cfs of 5.13 cfs potential flow)

-3=Orifice/Grate (Orifice Controls 0.61 cfs @ 6.96 fps)

-4=Sharp-Crested Rectangular Weir (Weir Controls 3.80 cfs @ 2.20 fps)

Printed 9/13/2024 Page 102

Pond 14P: UG 120

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 103

Summary for Pond 16P: DET 210

Inflow Area = 2.220 ac. 0.00% Impervious, Inflow Depth > 4.64" for 25-Year event 11.66 cfs @ 12.14 hrs, Volume= Inflow = 0.858 af 2.08 cfs @ 12.61 hrs, Volume= 0.857 af, Atten= 82%, Lag= 28.3 min Outflow 1.39 cfs @ 12.61 hrs, Volume= Discarded = 0.763 af 0.68 cfs @ 12.61 hrs, Volume= 0.094 af Primary Routed to Link 18L: PR POA / B Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af Routed to Link 18L: PR POA / B

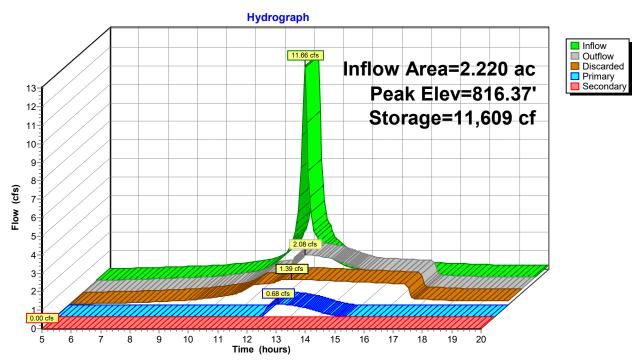
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 816.37' @ 12.61 hrs Surf.Area= 9,412 sf Storage= 11,609 cf

Plug-Flow detention time= 49.6 min calculated for 0.857 af (100% of inflow) Center-of-Mass det. time= 49.0 min (809.2 - 760.2)

Volume	Invert	Avail.Sto	rage Storage	e Description				
#1	815.00'	28,80	06 cf Custon	n Stage Data (Coni	ic) Listed below (Red	;alc)		
Elevation	on Si	urf.Area	Inc.Store	Cum.Store	Wet.Area			
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)			
815.0	00	7,517	0	0	7,517			
816.0	00	8,907	8,202	8,202	8,944			
817.0	00	10,296	9,593	17,795	10,375			
818.0	00	11,741	11,011	28,806	11,867			
Device	Routing	Invert	Outlet Device	es				
#1	Discarded	carded 815.00' 6.400 in/hr Exfiltration			rface area			
#2	Primary	815.00'	12.0" Round Culvert					
			L= 127.0' CPP, projecting, no headwall, Ke= 0.900					
			Inlet / Outlet Invert= 815.00' / 806.40' S= 0.0677 '/' Cc= 0.900					
		0.4-001	n= 0.012, Flow Area= 0.79 sf					
#3	Device 2	815.60'		rifice/Grate C= 0.				
11.4	Davids	040.001		eir flow at low head		1.0		
#4	Device 2	816.80'			angular Weir 2 End			
#5	Secondary	817.00'			80 1.00 1.20 1.40	sted Rectangular Weir		
				.00 3.50 4.00 4.50		1.00 1.00		
) 2.69 2.68 2.68 2.	66 2 64 2 64		
				.65 2.66 2.66 2.6		00 Z.OT Z.OT		
			=:0: =:00 =	= = =	 .			

Discarded OutFlow Max=1.39 cfs @ 12.61 hrs HW=816.37' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.39 cfs)


Primary OutFlow Max=0.68 cfs @ 12.61 hrs HW=816.37' (Free Discharge)

-2=Culvert (Passes 0.68 cfs of 2.79 cfs potential flow)
-3=Orifice/Grate (Orifice Controls 0.68 cfs @ 3.48 fps)

4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=815.00' (Free Discharge)
5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 16P: DET 210

Printed 9/13/2024

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 105

Summary for Pond 17P: DET 220

Inflow Area = 1.110 ac, 0.00% Impervious, Inflow Depth > 4.74" for 25-Year event 6.02 cfs @ 12.13 hrs, Volume= Inflow 0.439 af 5.81 cfs @ 12.15 hrs, Volume= 0.389 af, Atten= 3%, Lag= 1.3 min Outflow 0.26 cfs @ 12.15 hrs, Volume= Discarded = 0.194 af 5.55 cfs @ 12.15 hrs, Volume= 0.195 af Primary Routed to Link 18L: PR POA / B Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af Routed to Link 18L: PR POA / B

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Plug-Flow detention time= 82.9 min calculated for 0.389 af (89% of inflow) Center-of-Mass det. time= 44.6 min (801.7 - 757.0)

Peak Elev= 802.82' @ 12.15 hrs Surf.Area= 2,665 sf Storage= 4,811 cf

Volume	Invert	Avail.Sto	rage Storag	e Description		
#1	800.00'	8,87	75 cf Custo	m Stage Data (Co	onic) Listed below	(Recalc)
Elevation (feet)	Surf.	Area sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
800.00		879	0	0	879	
801.00		,441	1,148	1,148	1,454	
802.00		,039	1,731	2,880	2,070	
803.00 804.00		,810 ,412	2,414 3,581	5,294 8,875	2,860 4,476	

Device	Routing	Invert	Outlet Devices
#1	Discarded	800.00'	4.278 in/hr Exfiltration over Surface area
#2	Primary	800.50'	15.0" Round Culvert
	-		L= 39.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 800.50' / 800.00' S= 0.0128 '/' Cc= 0.900
			n= 0.012, Flow Area= 1.23 sf
#3	Device 2	802.00'	6.0" Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Device 2	802.60'	14.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#5	Secondary	803.00'	10.0' long + 3.0 '/' SideZ x 8.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80
			2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64
			2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74

Discarded OutFlow Max=0.26 cfs @ 12.15 hrs HW=802.82' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.26 cfs)

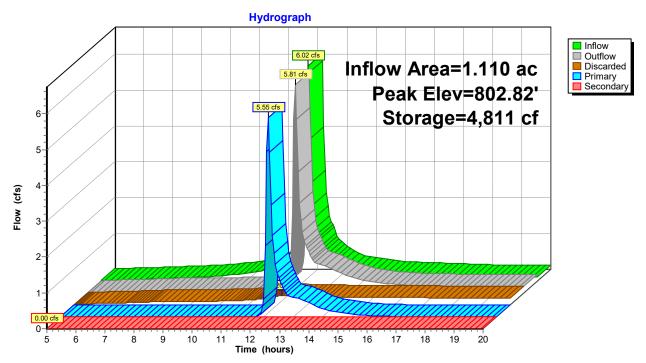
Primary OutFlow Max=5.53 cfs @ 12.15 hrs HW=802.82' (Free Discharge)

2=Culvert (Passes 5.53 cfs of 6.08 cfs potential flow) **3=Orifice/Grate** (Orifice Controls 0.72 cfs @ 3.65 fps)

-4=Sharp-Crested Rectangular Weir (Weir Controls 4.82 cfs @ 1.55 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=800.00' (Free Discharge)

5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)


Prepared by SLR International Corporation

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Printed 9/13/2024

Page 106

Pond 17P: DET 220

Volume

Printed 9/13/2024

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 107

Summary for Pond 19P: PLUNGE POOL 120

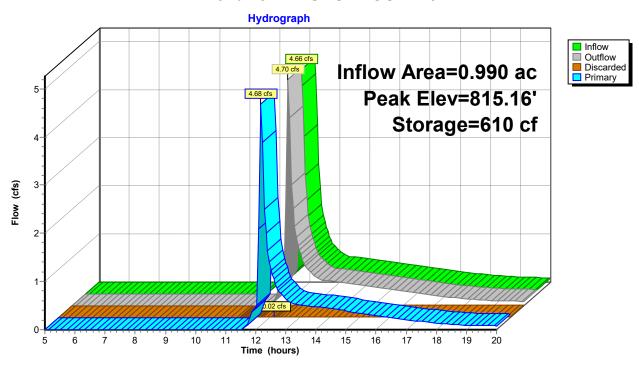
Inflow Area = 0.990 ac, 0.00% Impervious, Inflow Depth > 3.87" for 25-Year event
Inflow = 4.66 cfs @ 12.17 hrs, Volume= 0.319 af
Outflow = 4.70 cfs @ 12.17 hrs, Volume= 0.308 af, Atten= 0%, Lag= 0.2 min
Discarded = 0.02 cfs @ 12.17 hrs, Volume= 0.011 af
Primary = 4.68 cfs @ 12.17 hrs, Volume= 0.297 af

Routed to Link 15L: PR POA / A

Invert

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 815.16' @ 12.17 hrs Surf.Area= 836 sf Storage= 610 cf

Plug-Flow detention time= 17.7 min calculated for 0.308 af (96% of inflow) Center-of-Mass det. time= 5.9 min (841.3 - 835.4)


Avail Storage Description

VOIGITIC	IIIVCIL	/ Wall.Old	age clorage	Description	
#1	814.00'	1,51	7 cf Custom	Stage Data (Pri	smatic) Listed below (Recalc)
Elevation (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
814.0	00	223	0	0	
815.0	00	744	484	484	
816.0	00	1,322	1,033	1,517	
Device	Routing	Invert	Outlet Devices	3	
#1	Discarded	814.00'	0.860 in/hr Ex	filtration over S	Surface area
#2	Primary	815.00'	Head (feet) 0. 2.00 2.50 3.0 Coef. (English	.20 0.40 0.60 (00 3.50 4.00 4.	70 2.69 2.68 2.68 2.66 2.64 2.64

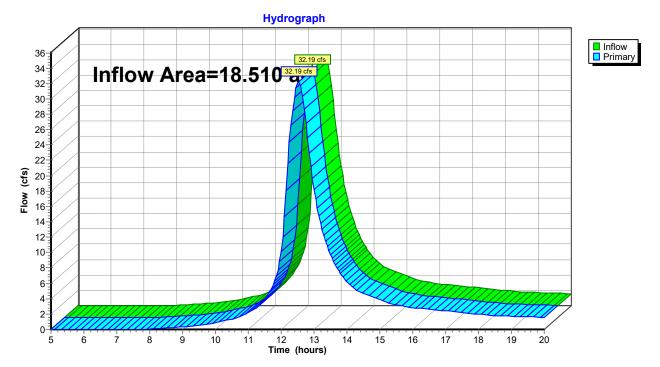
Discarded OutFlow Max=0.02 cfs @ 12.17 hrs HW=815.15' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=4.38 cfs @ 12.17 hrs HW=815.15' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 4.38 cfs @ 0.95 fps)

Pond 19P: PLUNGE POOL 120

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Summary for Link 4L: EX POA / A


Inflow Area =

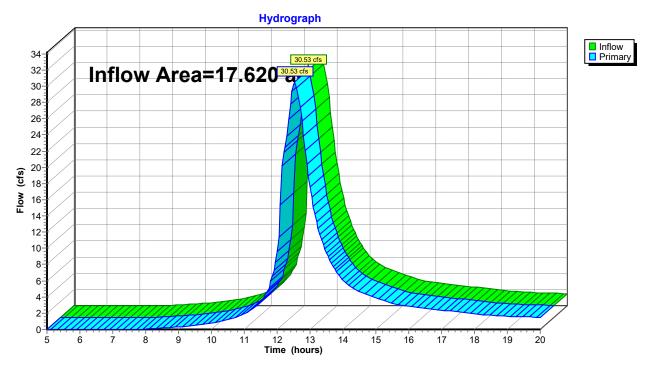
Inflow

18.510 ac, 0.00% Impervious, Inflow Depth > 3.11" for 25-Year event 32.19 cfs @ 12.53 hrs, Volume= 4.801 af 32.19 cfs @ 12.53 hrs, Volume= 4.801 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 4L: EX POA / A

Summary for Link 15L: PR POA / A


Inflow Area =

Inflow

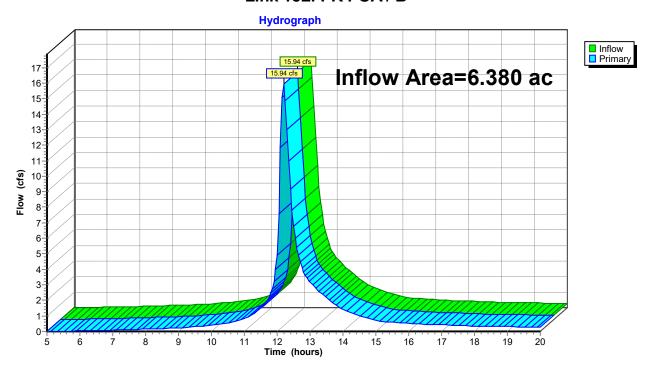
17.620 ac, 0.00% Impervious, Inflow Depth > 3.15" for 25-Year event 30.53 cfs @ 12.54 hrs, Volume= 4.618 af 30.53 cfs @ 12.54 hrs, Volume= 4.618 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 15L: PR POA / A

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Summary for Link 18L: PR POA / B


Inflow Area =

Inflow

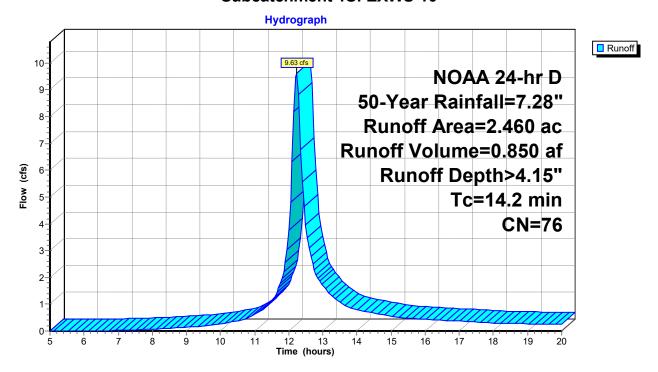
6.380 ac, 0.00% Impervious, Inflow Depth > 2.51" for 25-Year event 15.94 cfs @ 12.20 hrs, Volume= 1.332 af 15.94 cfs @ 12.20 hrs, Volume= 1.332 af, Atten= 0%, Lag= 0.0 m 1.332 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 18L: PR POA / B

,

Runoff = 9.63 cfs @ 12.22 hrs, Volume= 0.850 af, Depth> 4.15"


Routed to Link 4L: EX POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 50-Year Rainfall=7.28"

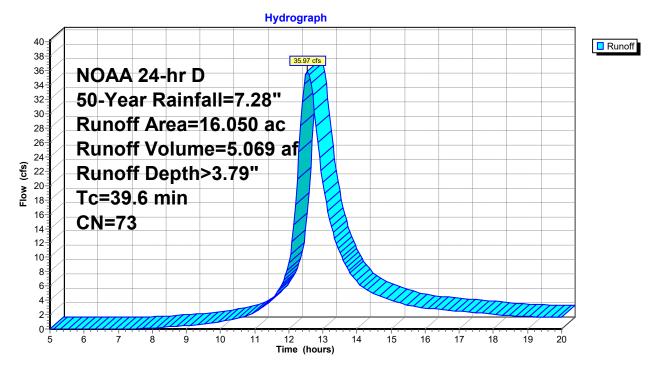
	Area	(ac)	CN	Desc	cription		
*	2.	460	76				
	2.460 100.00%				00% Pervi	ous Area	
		Leng			•		Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	14.2						Direct Entry,

Summary for Subcatchment 1S: EXWS-10

Subcatchment 1S: EXWS-10

,

Summary for Subcatchment 2S: EXWS-11


Runoff = 35.97 cfs @ 12.55 hrs, Volume= 5.069 af, Depth> 3.79"

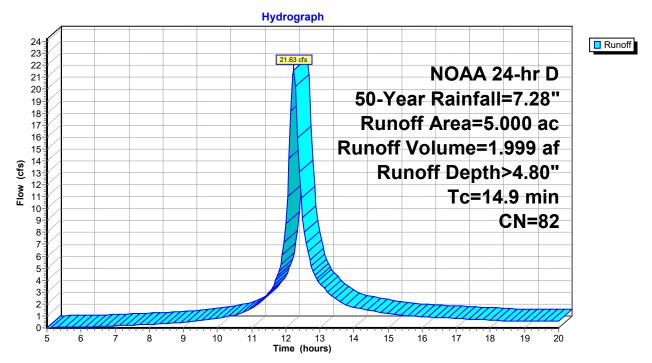
Routed to Link 4L: EX POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 50-Year Rainfall=7.28"

	Area	(ac)	CN	Desc	cription		
*	16.	050	73				
16.050 100.00% Pervious Area						ous Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	39.6						Direct Entry,

Subcatchment 2S: EXWS-11

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

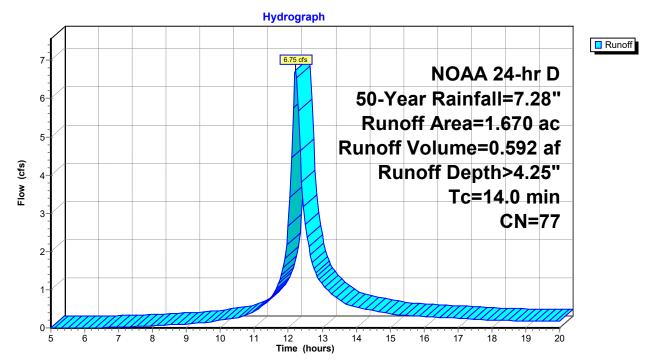

Runoff = 21.63 cfs @ 12.23 hrs, Volume= 1.999 af, Depth> 4.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 50-Year Rainfall=7.28"

Summary for Subcatchment 5S: EXWS-20 / B

	Area	(ac)	CN	Desc	ription		
7	5.	.000	82				
	5.	.000	100.00% Pervious Area				
	Тс	Lengtl			•	Capacity	Description
_	(min)	(feet	:) (1	ft/ft)	(ft/sec)	(cfs)	
	14.9						Direct Entry.

Subcatchment 5S: EXWS-20 / B


Summary for Subcatchment 6S: EXWS-30 / C

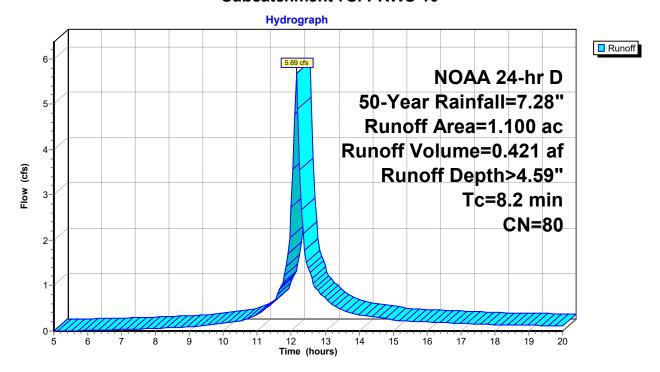
Runoff = 6.75 cfs @ 12.22 hrs, Volume= 0.592 af, Depth> 4.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 50-Year Rainfall=7.28"

	Area	(ac)	CN	Desc	cription		
*	1.	670	77				
	1.670 100.00% Pervious Area					ous Area	
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	14.0						Direct Entry.

Subcatchment 6S: EXWS-30 / C

Summary for Subcatchment 7S: PRWS-10


Runoff = 5.69 cfs @ 12.15 hrs, Volume= 0.421 af, Depth> 4.59"

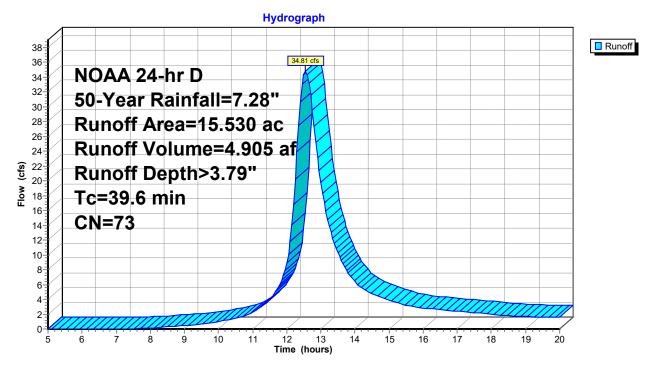
Routed to Link 15L: PR POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 50-Year Rainfall=7.28"

	Area	(ac)	CN	Desc	cription		
*	1.	100	80				
	1.100 100.00% Pervious Area					ous Area	
		Leng			•		Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	8.2						Direct Entry,

Subcatchment 7S: PRWS-10

Summary for Subcatchment 8S: PRWS-11


Runoff = 34.81 cfs @ 12.55 hrs, Volume= 4.905 af, Depth> 3.79"

Routed to Link 15L: PR POA / A

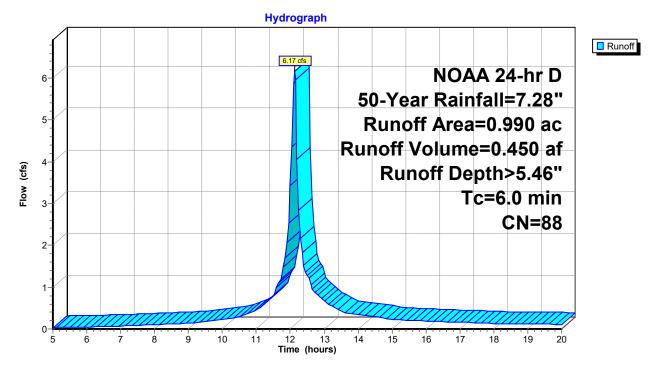
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 50-Year Rainfall=7.28"

	Area	(ac)	CN	Desc	cription		
*	15.	530	73				
	15.530			100.00% Pervious Area			
	Тс	_			,	. ,	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	39.6						Direct Entry,

Subcatchment 8S: PRWS-11

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Runoff = 6.17 cfs @ 12.13 hrs, Volume= 0.450 af, Depth> 5.46"


Routed to Pond 14P: UG 120

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 50-Year Rainfall=7.28"

	Area	(ac)	CN	Desc	cription		
*	0.	990	88				
	0.	990		100.	00% Pervi	ous Area	
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry,

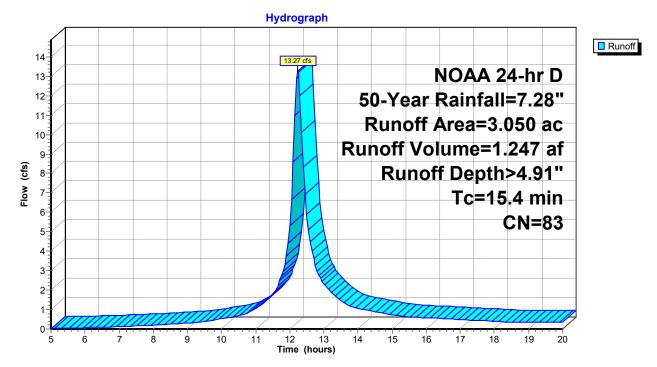
Summary for Subcatchment 9S: PRWS-12

Subcatchment 9S: PRWS-12

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 119

Summary for Subcatchment 10S: PRWS-20


Runoff = 13.27 cfs @ 12.24 hrs, Volume= 1.247 af, Depth> 4.91"

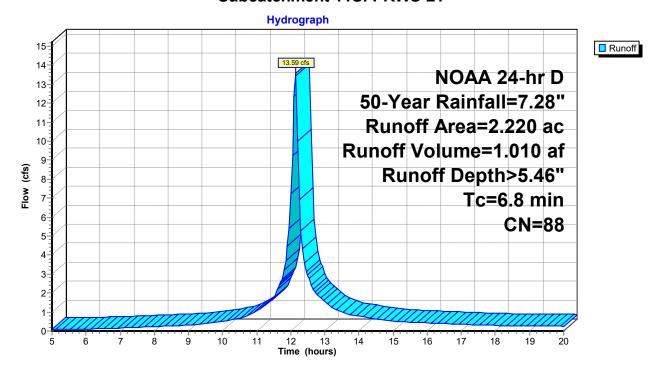
Routed to Link 18L: PR POA / B

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 50-Year Rainfall=7.28"

	Area	(ac)	CN	Desc	cription		
*	3.	050	83				
	3.	050		100.	00% Pervi	ous Area	
	Тс	Leng	th	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	15.4						Direct Entry,

Subcatchment 10S: PRWS-20

Summary for Subcatchment 11S: PRWS-21


Runoff = 13.59 cfs @ 12.14 hrs, Volume= 1.010 af, Depth> 5.46"

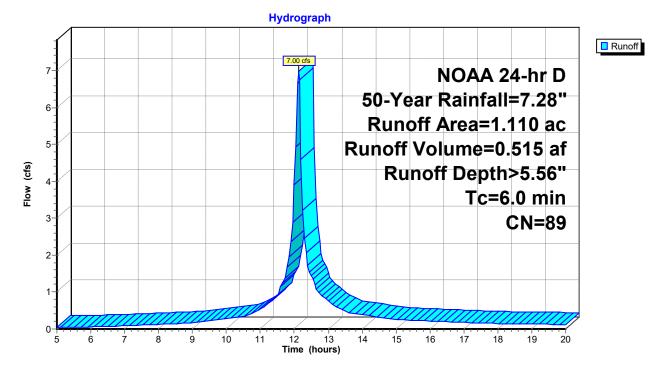
Routed to Pond 16P: DET 210

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 50-Year Rainfall=7.28"

	Area	(ac)	CN	Desc	cription		
*	2.	220	88				
	2.	220		100.	00% Pervi	ous Area	
	Тс	Leng	:h :	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	6.8						Direct Entry,

Subcatchment 11S: PRWS-21

Summary for Subcatchment 12S: PRWS-22


Runoff = 7.00 cfs @ 12.13 hrs, Volume= 0.515 af, Depth> 5.56"

Routed to Pond 17P: DET 220

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 50-Year Rainfall=7.28"

	Area	(ac)	CN	Desc	cription		
*	1.	110	89				
	1.	110		100.	00% Pervi	ous Area	
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry,

Subcatchment 12S: PRWS-22

ydioCAD® 10.20-4a S/II 06103 © 2023 HydioCAD Software Solutions LLC


Runoff = 5.65 cfs @ 12.21 hrs, Volume= 0.492 af, Depth> 4.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 50-Year Rainfall=7.28"

Summary for Subcatchment 13S: PRWS-30 / C

	Area	(ac)	CN	Desc	cription		
*	1.	320	79				
	1.	320		100.	00% Pervi	ous Area	
	Тс	Lengt			Velocity	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	13.4						Direct Entry,

Subcatchment 13S: PRWS-30 / C

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 123

Summary for Pond 14P: UG 120

Inflow Area =	0.990 ac,	0.00% Impervious, Inflow	Depth > 5.46"	for 50-Year event
Inflow =	6.17 cfs @	12.13 hrs, Volume=	0.450 af	
Outflow =	5.32 cfs @	12.17 hrs, Volume=	0.395 af, Atte	en= 14%, Lag= 2.8 min
Discarded =	0.01 cfs @	5.70 hrs, Volume=	0.009 af	
Primary =	5.31 cfs @	12.17 hrs, Volume=	0.386 af	
Routed to Pond	d 19P : PLUN	IGE POOL 120		

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 821.88' @ 12.17 hrs Surf.Area= 0.044 ac Storage= 0.138 af

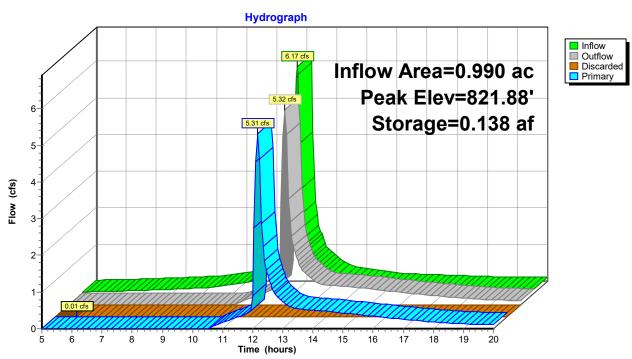
Plug-Flow detention time= 110.0 min calculated for 0.395 af (88% of inflow) Center-of-Mass det. time= 69.1 min (825.3 - 756.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	818.30'	0.000 af	24.00'W x 80.00'L x 4.67'H Field A
			0.206 af Overall - 0.206 af Embedded = 0.000 af x 40.0% Voids
#2A	818.30'	0.155 af	retain_it retain_it 4.0' x 30 Inside #1
			Inside= 84.0"W x 48.0"H => 28.87 sf x 8.00'L = 230.9 cf
			Outside= 96.0"W x 56.0"H => 37.33 sf x 8.00'L = 298.7 cf
			3 Rows adjusted for 196.3 cf perimeter wall
		0.155 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	818.30'	0.172 in/hr Exfiltration over Surface area
#2	Primary	818.30'	12.0" Round Culvert
	•		L= 30.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 818.30' / 817.30' S= 0.0333 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#3	Device 2	819.50'	4.0" Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Device 2	821.30'	3.9' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Discarded OutFlow Max=0.01 cfs @ 5.70 hrs HW=818.35' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.01 cfs)


Primary OutFlow Max=5.22 cfs @ 12.17 hrs HW=821.86' (Free Discharge)

-2=Culvert (Inlet Controls 5.22 cfs @ 6.65 fps)

-3=Orifice/Grate (Passes < 0.62 cfs potential flow)

-4=Sharp-Crested Rectangular Weir (Passes < 5.22 cfs potential flow)

Pond 14P: UG 120

Volume

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 125

Summary for Pond 16P: DET 210

Inflow Area = 2.220 ac. 0.00% Impervious, Inflow Depth > 5.46" for 50-Year event 13.59 cfs @ 12.14 hrs, Volume= Inflow 1.010 af 2.30 cfs @ 12.63 hrs, Volume= 1.009 af, Atten= 83%, Lag= 29.4 min Outflow 1.45 cfs @ 12.63 hrs, Volume= Discarded = 0.863 af 0.85 cfs @ 12.63 hrs, Volume= 0.146 af Primary Routed to Link 18L: PR POA / B Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af

Routed to Link 18L: PR POA / B

Invert

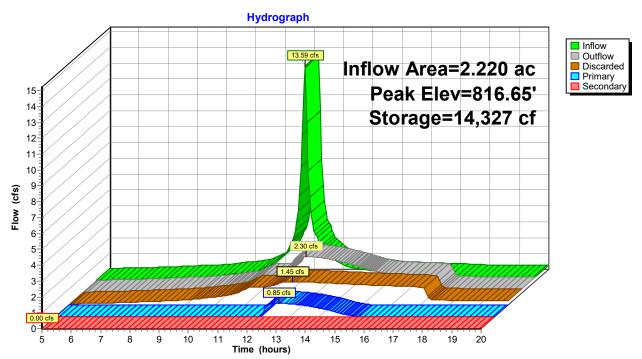
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 816.65' @ 12.63 hrs Surf.Area= 9,805 sf Storage= 14,327 cf

Plug-Flow detention time= 56.7 min calculated for 1.005 af (100% of inflow) Center-of-Mass det. time= 55.9 min (812.7 - 756.8)

Avail Storage Storage Description

volullie	IIIVEIL	Avaii.Siu	raye Storay	e Description				
#1	815.00'	28,8	06 cf Custor	n Stage Data (Conid	c) Listed below (Red	alc)		
Elevation		urf.Area	Inc.Store	Cum.Store	Wet.Area			
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)			
815.0	00	7,517	0	0	7,517			
816.0	00	8,907	8,202	8,202	8,944			
817.0	00	10,296	9,593	17,795	10,375			
818.0	00	11,741	11,011	28,806	11,867			
Device	Routing	Invert	Outlet Devic	es				
#1	Discarded	815.00'	6.400 in/hr E	Exfiltration over Sur	face area			
#2	Primary	815.00'	12.0" Round Culvert					
	·		L= 127.0' CPP, projecting, no headwall, Ke= 0.900					
			Inlet / Outlet Invert= 815.00' / 806.40' S= 0.0677 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf					
#3	Device 2	815.60'	6.0" Vert. Orifice/Grate C= 0.600					
			Limited to we	eir flow at low heads	}			
#4	Device 2	816.80'		harp-Crested Recta		Contraction(s)		
#5	Secondary	817.00'				sted Rectangular Wei		
	,			0.20 0.40 0.60 0.8				
				3.00 3.50 4.00 4.50				
				sh) 2.43 2.54 2.70		66 2.64 2.64		
			, ,	2.65 2.66 2.66 2.68				
					.			

Discarded OutFlow Max=1.45 cfs @ 12.63 hrs HW=816.65' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.45 cfs)


Primary OutFlow Max=0.85 cfs @ 12.63 hrs HW=816.65' (Free Discharge)
2=Culvert (Passes 0.85 cfs of 3.21 cfs potential flow)

3=Orifice/Grate (Orifice Controls 0.85 cfs @ 4.32 fps)

-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=815.00' (Free Discharge)
5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 16P: DET 210

Volume

Invert

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 127

Summary for Pond 17P: DET 220

Inflow Area = 1.110 ac. 0.00% Impervious, Inflow Depth > 5.56" for 50-Year event 7.00 cfs @ 12.13 hrs, Volume= Inflow 0.515 af 6.41 cfs @ 12.15 hrs, Volume= 0.460 af, Atten= 8%, Lag= 1.6 min Outflow 0.27 cfs @ 12.15 hrs, Volume= 0.204 af Discarded = 6.15 cfs @ 12.15 hrs, Volume= 0.256 af Primary Routed to Link 18L: PR POA / B Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af Routed to Link 18L: PR POA / B

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 802.86' @ 12.15 hrs Surf.Area= 2,698 sf Storage= 4,919 cf

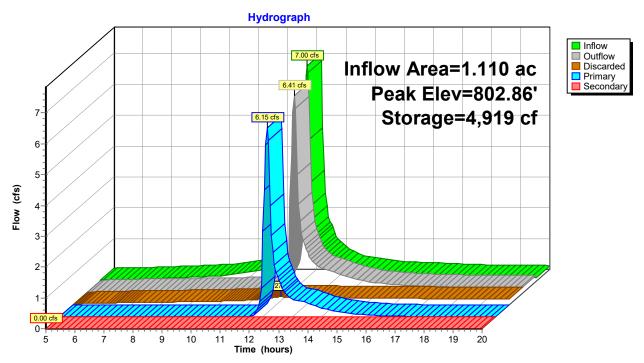
Plug-Flow detention time= 75.0 min calculated for 0.458 af (89% of inflow) Center-of-Mass det. time= 38.8 min (792.6 - 753.9)

Avail.Storage Storage Description

#1	800.00'	8,8	75 cf Custom	Stage Data (Conic	Listed below (Recal	c)			
Elevation	on Su	ırf.Area	Inc.Store	Cum.Store	Wet.Area				
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)				
800.0	00	879	0	0	879				
801.0	00	1,441	1,148	1,148	1,454				
802.0		2,039	1,731	2,880	2,070				
803.0		2,810	2,414	5,294	2,860				
804.0	00	4,412	3,581	8,875	4,476				
Device	Routing	Invert	Outlet Devices	;					
#1	Discarded	800.00'	4.278 in/hr Exfiltration over Surface area						
#2	Primary	800.50'	15.0" Round Culvert						
	•		L= 39.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 800.50' / 800.00' S= 0.0128 '/' Cc= 0.900						
			n= 0.012, Flow Area= 1.23 sf						
#3	Device 2	802.00'	•	6.0" Vert. Orifice/Grate C= 0.600					
			Limited to weir	flow at low heads					
#4	Device 2	802.60'	14.0' long Sha	rp-Crested Rectar	ngular Weir 2 End C	ontraction(s)			
#5	Secondary	803.00'	10.0' long + 3	.0 '/' SideZ x 8.0' b	readth Broad-Creste	ed Rectangular Weir			
			` ,		1.00 1.20 1.40 1.6	30 1.80			
				0 3.50 4.00 4.50					
					2.69 2.68 2.68 2.66	2.64 2.64			
			2.64 2.65 2.6	5 2.66 2.66 2.68	2.70 2.74				

Discarded OutFlow Max=0.27 cfs @ 12.15 hrs HW=802.86' (Free Discharge) **-1=Exfiltration** (Exfiltration Controls 0.27 cfs)

Primary OutFlow Max=6.15 cfs @ 12.15 hrs HW=802.86' (Free Discharge)


-2=Culvert (Inlet Controls 6.15 cfs @ 5.01 fps)

-3=Orifice/Grate (Passes < 0.74 cfs potential flow)

-4=Sharp-Crested Rectangular Weir (Passes < 6.09 cfs potential flow)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=800.00' (Free Discharge) -5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 17P: DET 220

Volume

Printed 9/13/2024

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 129

Summary for Pond 19P: PLUNGE POOL 120

Inflow Area = 0.990 ac, 0.00% Impervious, Inflow Depth > 4.67" for 50-Year event
Inflow = 5.31 cfs @ 12.17 hrs, Volume= 0.386 af
Outflow = 5.36 cfs @ 12.18 hrs, Volume= 0.374 af, Atten= 0%, Lag= 0.2 min
Discarded = 0.02 cfs @ 12.18 hrs, Volume= 0.011 af
Primary = 5.34 cfs @ 12.18 hrs, Volume= 0.363 af

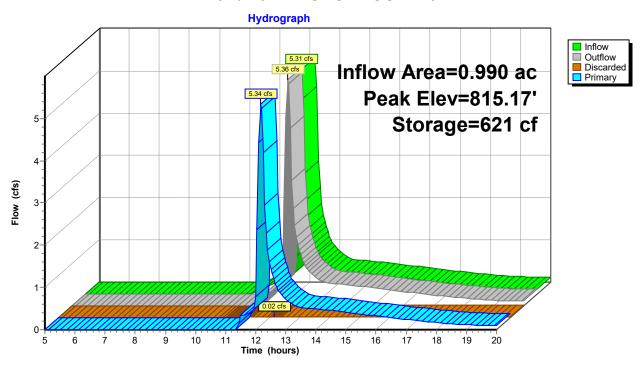
Routed to Link 15L: PR POA / A

Invert

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 815.17' @ 12.18 hrs Surf.Area= 844 sf Storage= 621 cf

Plug-Flow detention time= 15.5 min calculated for 0.374 af (97% of inflow) Center-of-Mass det. time= 5.3 min (832.2 - 826.9)

Avail.Storage Storage Description


		stage etchage	2 00011ptio11	
814.00	0' 1,5	17 cf Custom	Stage Data (Pr	ismatic) Listed below (Recalc)
		Inc.Store	Cum.Store	
et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
00	223	0	0	
00	744	484	484	
00	1,322	1,033	1,517	
Routing	Invert	Outlet Devices	3	
Discarded	814.00'	0.860 in/hr Ex	filtration over	Surface area
Primary	815.00'	30.0' long + 3	3.0 '/' SideZ x 8	.0' breadth Broad-Crested Rectangular Wei
#2 Primary 815.0		Head (feet) 0.	.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80
		2.00 2.50 3.0	0 3.50 4.00 4	.50 5.00 5.50
		Coef. (English) 2.43 2.54 2.	70 2.69 2.68 2.68 2.66 2.64 2.64
֡	814.00 on S ot) 00 00 Routing Discarded	814.00' 1,5 on Surf.Area et) (sq-ft) 00 223 00 744 00 1,322 Routing Invert Discarded 814.00'	814.00' 1,517 cf Custom on Surf.Area Inc.Store et) (sq-ft) (cubic-feet) 00 223 0 00 744 484 00 1,322 1,033 Routing Invert Outlet Devices Discarded 814.00' 0.860 in/hr Ex Primary 815.00' 30.0' long + 3 Head (feet) 0 2.00 2.50 3.0	814.00' 1,517 cf Custom Stage Data (Pron Surf.Area Inc.Store (cubic-feet) (cubic-feet) (sq-ft) (cubic-feet) (cubic-feet) (cubic-feet) 0 (cubi

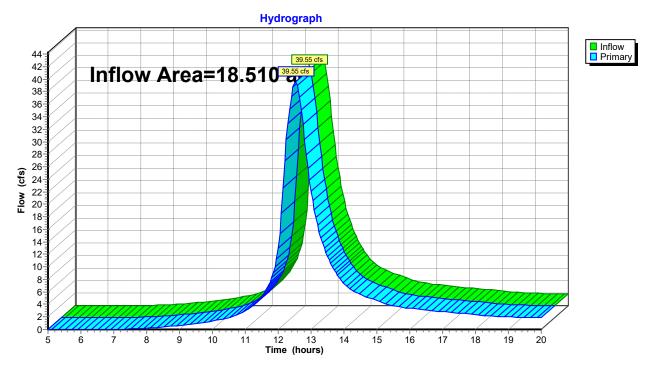
2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74

Discarded OutFlow Max=0.02 cfs @ 12.18 hrs HW=815.17' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=5.20 cfs @ 12.18 hrs HW=815.17' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 5.20 cfs @ 1.00 fps)

Pond 19P: PLUNGE POOL 120

Summary for Link 4L: EX POA / A


Inflow Area = 18.510 ac, 0.00% Impervious, Inflow Depth > 3.84" for 50-Year event

Inflow = 39.55 cfs @ 12.52 hrs, Volume= 5.919 af

Primary = 39.55 cfs @ 12.52 hrs, Volume= 5.919 af, Atten= 0%, Lag= 0.0 min

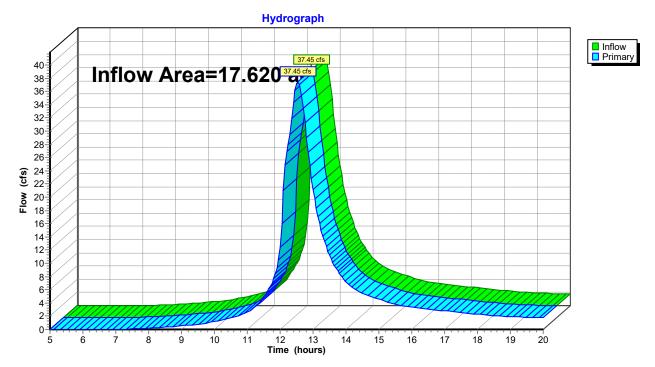
Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 4L: EX POA / A

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 132

Summary for Link 15L: PR POA / A


Inflow Area =

Inflow

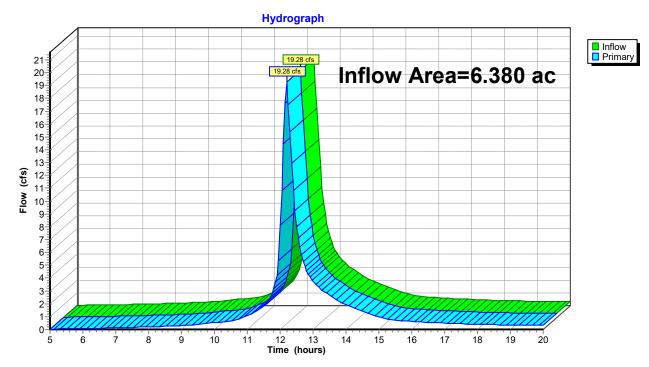
17.620 ac, 0.00% Impervious, Inflow Depth > 3.87" for 50-Year event 37.45 cfs @ 12.54 hrs, Volume= 5.688 af 37.45 cfs @ 12.54 hrs, Volume= 5.688 af, Atten= 0%, Lag= 0.0 m 5.688 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 15L: PR POA / A

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Summary for Link 18L: PR POA / B


Inflow Area =

Inflow =

6.380 ac, 0.00% Impervious, Inflow Depth > 3.10" for 50-Year event 19.28 cfs @ 12.20 hrs, Volume= 1.649 af 19.28 cfs @ 12.20 hrs, Volume= 1.649 af, Atten= 0%, Lag= 0.0 m 1.649 af, Atten= 0%, Lag= 0.0 min Primary

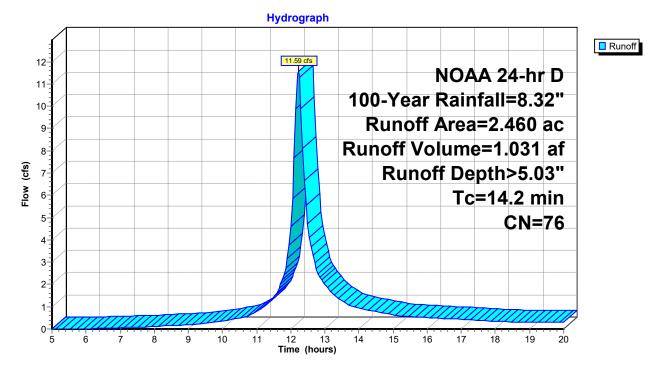
Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 18L: PR POA / B

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 134

Summary for Subcatchment 1S: EXWS-10


Runoff = 11.59 cfs @ 12.22 hrs, Volume= 1.031 af, Depth> 5.03"

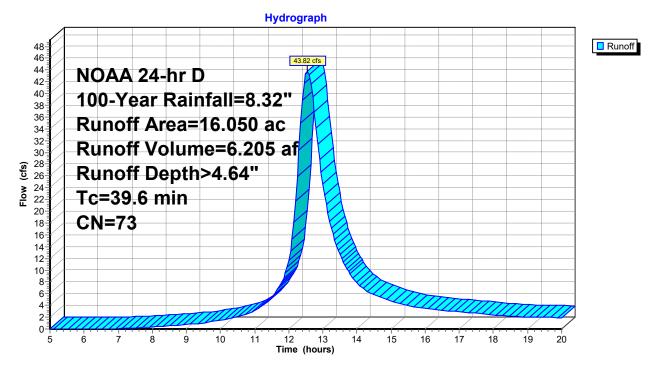
Routed to Link 4L: EX POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 100-Year Rainfall=8.32"

_	Area	(ac)	CN	Desc	cription		
*	2.	460	76				
	2.	460		100.	00% Pervi	ous Area	
	Тс	Lengt	h S	Slope	Velocity	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	14.2						Direct Entry,

Subcatchment 1S: EXWS-10

Summary for Subcatchment 2S: EXWS-11

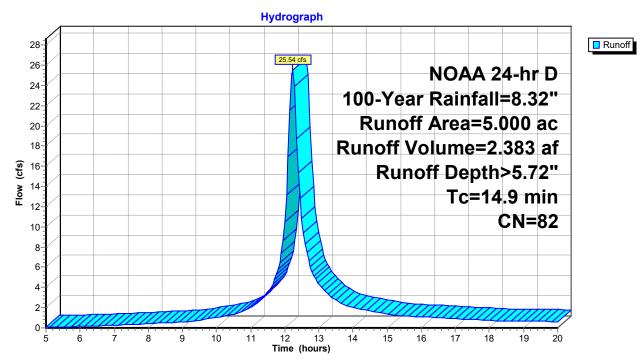

Runoff = 43.82 cfs @ 12.55 hrs, Volume= 6.205 af, Depth> 4.64"

Routed to Link 4L: EX POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 100-Year Rainfall=8.32"

	Area	(ac)	CN	Desc	cription		
*	16.	050	73				
	16.		100.	00% Pervi	ous Area		
	Тс	_		•	•		Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	39.6						Direct Entry,

Subcatchment 2S: EXWS-11

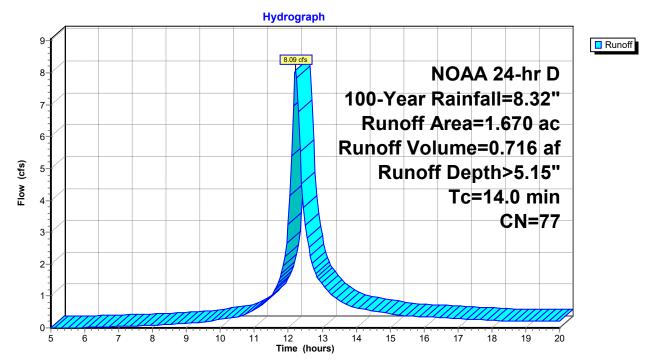

Summary for Subcatchment 5S: EXWS-20 / B

Runoff = 25.54 cfs @ 12.23 hrs, Volume= 2.383 af, Depth> 5.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 100-Year Rainfall=8.32"

_	Area	(ac)	CN	Desc	cription		
7	5	.000	82				
_	5	.000		100.	00% Pervi	ous Area	
	Тс	Leng	th :		Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	14.9						Direct Entry.

Subcatchment 5S: EXWS-20 / B


Summary for Subcatchment 6S: EXWS-30 / C

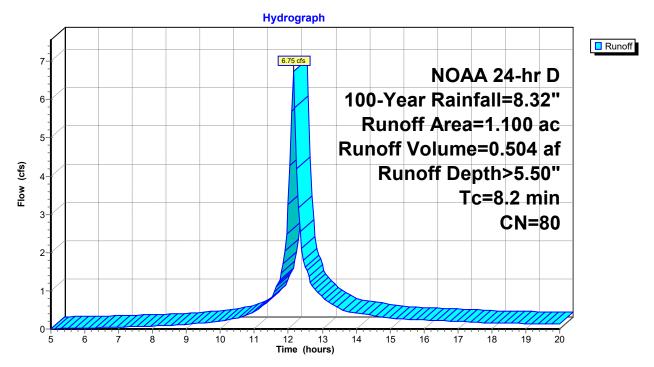
Runoff = 8.09 cfs @ 12.22 hrs, Volume= 0.716 af, Depth> 5.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 100-Year Rainfall=8.32"

Area	(ac)	CN D	escription		
* 1.	.670	77			
1.	.670	10	00.00% Pervi	ious Area	
Тс	Length	n Slop	e Velocity	Capacity	Description
(min)	(feet) (ft/1	t) (ft/sec)	(cfs)	
14.0					Direct Entry.

Subcatchment 6S: EXWS-30 / C

Summary for Subcatchment 7S: PRWS-10


Runoff = 6.75 cfs @ 12.15 hrs, Volume= 0.504 af, Depth> 5.50"

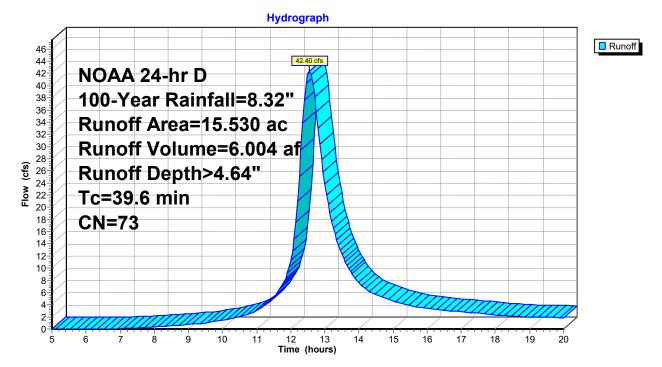
Routed to Link 15L: PR POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 100-Year Rainfall=8.32"

	Area	(ac)	CN	Desc	cription		
*	1.	100	80				
	1.	100		100.	00% Pervi	ous Area	
		Leng			•		Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	8.2						Direct Entry,

Subcatchment 7S: PRWS-10

Summary for Subcatchment 8S: PRWS-11


Runoff = 42.40 cfs @ 12.55 hrs, Volume= 6.004 af, Depth> 4.64"

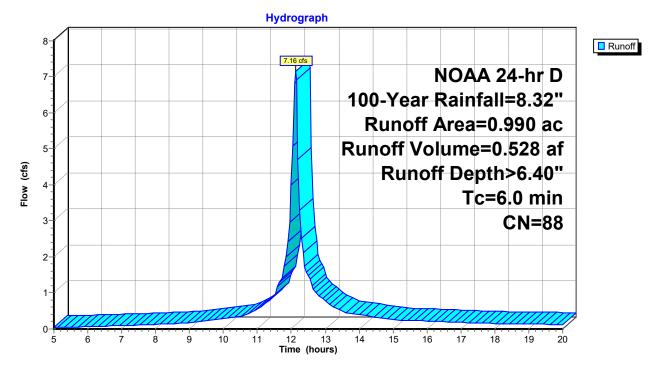
Routed to Link 15L: PR POA / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 100-Year Rainfall=8.32"

	Area	(ac)	CN	Desc	cription		
*	15.	530	73				
	15.530			100.	00% Pervi	ous Area	
	Тс	_			•		Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	39.6						Direct Entry,

Subcatchment 8S: PRWS-11

Summary for Subcatchment 9S: PRWS-12


Runoff = 7.16 cfs @ 12.13 hrs, Volume= 0.528 af, Depth> 6.40"

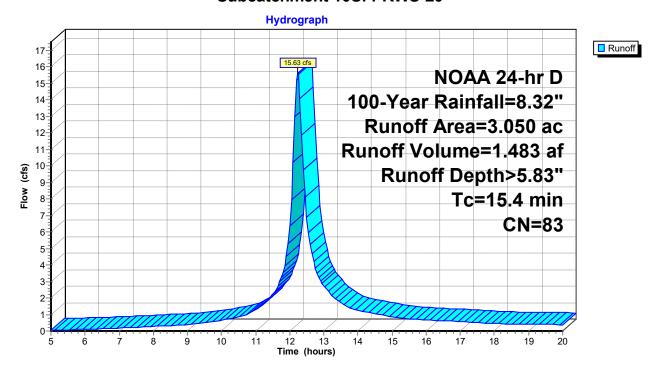
Routed to Pond 14P: UG 120

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 100-Year Rainfall=8.32"

	Area	(ac)	CN	Desc	cription		
*	0.	990	88				
	0.990			100.	00% Pervi	ous Area	
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry,

Subcatchment 9S: PRWS-12

Summary for Subcatchment 10S: PRWS-20


Runoff = 15.63 cfs @ 12.23 hrs, Volume= 1.483 af, Depth> 5.83"

Routed to Link 18L: PR POA / B

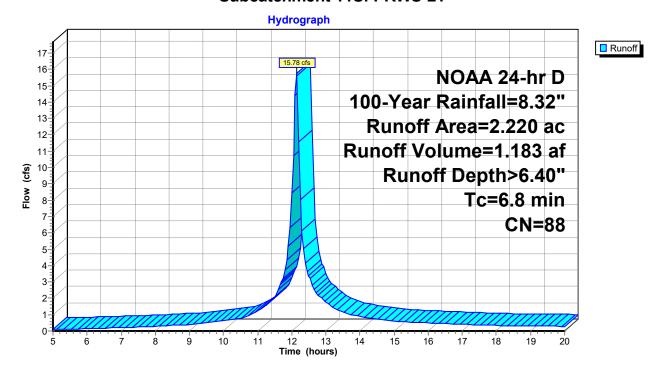
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 100-Year Rainfall=8.32"

	Area	(ac)	CN	Desc	cription		
*	3.	050	83				
	3.	050		100.	00% Pervi	ous Area	
	Tc	_			•		Description
_	(min)	(fee	:t)	(ft/ft)	(ft/sec)	(cfs)	
	15.4						Direct Entry,

Subcatchment 10S: PRWS-20

10.20-4a 3/11 00 100 @ 2020 TrydrooAb Cortware Colditions ELO

Runoff = 15.78 cfs @ 12.14 hrs, Volume= 1.183 af, Depth> 6.40"


Routed to Pond 16P: DET 210

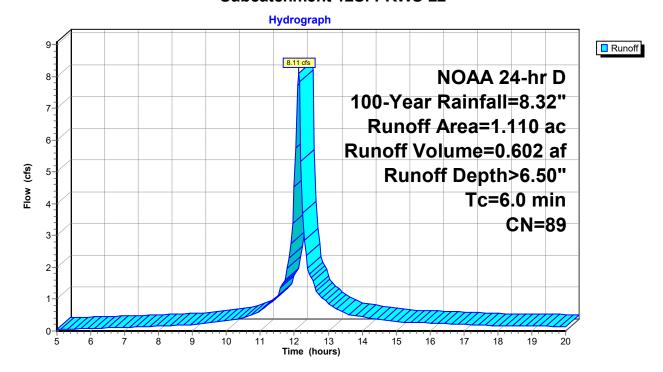
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 100-Year Rainfall=8.32"

	Area	(ac)	CN	Desc	cription		
*	2.	220	88				
	2.220			100.	00% Pervi	ous Area	
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.8						Direct Entry,

Summary for Subcatchment 11S: PRWS-21

Subcatchment 11S: PRWS-21

Summary for Subcatchment 12S: PRWS-22


Runoff = 8.11 cfs @ 12.13 hrs, Volume= 0.602 af, Depth> 6.50"

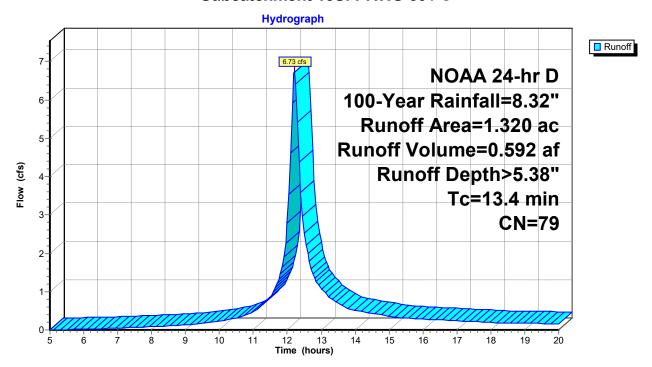
Routed to Pond 17P: DET 220

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 100-Year Rainfall=8.32"

	Area	(ac)	CN	Desc	cription		
*	1.	110	89				
	1.110 100.00% Pervious Area				00% Pervi	ous Area	
	Тс	_		•	•		Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry,

Subcatchment 12S: PRWS-22

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC


Runoff = 6.73 cfs @ 12.21 hrs, Volume= 0.592 af, Depth> 5.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs NOAA 24-hr D 100-Year Rainfall=8.32"

Summary for Subcatchment 13S: PRWS-30 / C

	Area	(ac)	CN	Desc	cription		
7	· 1.	.320	79				
	1.320 100.00% Pervious Area					ous Area	
	Тс	Lengt	h S	Slope	Velocity	Capacity	Description
	(min)	(feet	t)	(ft/ft)	(ft/sec)	(cfs)	
	13.4						Direct Entry.

Subcatchment 13S: PRWS-30 / C

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 145

Summary for Pond 14P: UG 120

Inflow Area =	0.990 ac,	0.00% Impervious, Inflow I	Depth > 6.40"	for 100-Year event
Inflow =	7.16 cfs @	12.13 hrs, Volume=	0.528 af	
Outflow =	5.42 cfs @	12.19 hrs, Volume=	0.471 af, Att	en= 24%, Lag= 3.6 min
Discarded =	0.01 cfs @	5.50 hrs, Volume=	0.009 af	
Primary =	5.41 cfs @	12.19 hrs, Volume=	0.462 af	
Routed to Pond	d 19P : PLUN	IGE POOL 120		

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 822.08' @ 12.19 hrs Surf.Area= 0.044 ac Storage= 0.146 af

Plug-Flow detention time= 102.0 min calculated for 0.471 af (89% of inflow) Center-of-Mass det. time= 64.9 min (818.0 - 753.1)

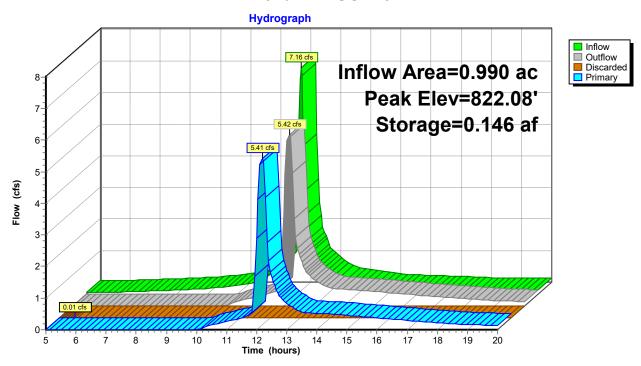
Volume	Invert	Avail.Storage	Storage Description
#1A	818.30'	0.000 af	24.00'W x 80.00'L x 4.67'H Field A
			0.206 af Overall - 0.206 af Embedded = 0.000 af \times 40.0% Voids
#2A	818.30'	0.155 af	retain_it retain_it 4.0' x 30 Inside #1
			Inside= 84.0"W x 48.0"H => 28.87 sf x 8.00'L = 230.9 cf
			Outside= 96.0"W x 56.0"H => 37.33 sf x 8.00'L = 298.7 cf
			3 Rows adjusted for 196.3 cf perimeter wall
		0.155 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	818.30'	0.172 in/hr Exfiltration over Surface area
#2	Primary	818.30'	12.0" Round Culvert
	•		L= 30.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 818.30' / 817.30' S= 0.0333 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#3	Device 2	819.50'	4.0" Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Device 2	821.30'	3.9' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Discarded OutFlow Max=0.01 cfs @ 5.50 hrs HW=818.35' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=5.40 cfs @ 12.19 hrs HW=822.07' (Free Discharge)


-2=Culvert (Inlet Controls 5.40 cfs @ 6.87 fps)

-3=Orifice/Grate (Passes < 0.65 cfs potential flow)

-4=Sharp-Crested Rectangular Weir (Passes < 8.21 cfs potential flow)

Printed 9/13/2024

Pond 14P: UG 120

Volume

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 147

Summary for Pond 16P: DET 210

Inflow Area = 2.220 ac. 0.00% Impervious, Inflow Depth > 6.40" for 100-Year event 15.78 cfs @ 12.14 hrs, Volume= Inflow 1.183 af 3.70 cfs @ 12.45 hrs, Volume= 1.182 af, Atten= 77%, Lag= 19.0 min Outflow 1.50 cfs @ 12.45 hrs, Volume= Discarded = 0.957 af 2.20 cfs @ 12.45 hrs, Volume= 0.225 af Primary Routed to Link 18L: PR POA / B Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af

Routed to Link 18L: PR POA / B

Invert

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 816.89' @ 12.45 hrs Surf.Area= 10,138 sf Storage= 16,672 cf

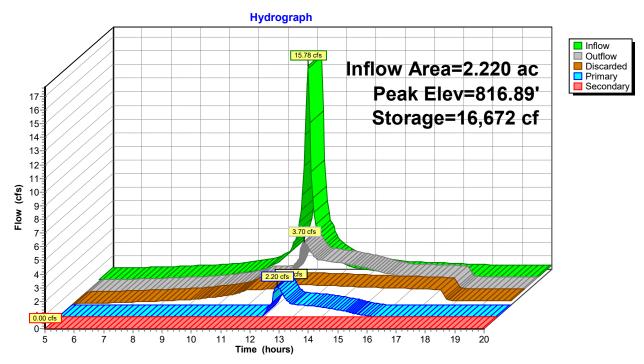
Plug-Flow detention time= 59.6 min calculated for 1.182 af (100% of inflow) Center-of-Mass det. time= 59.0 min (812.7 - 753.7)

Avail.Storage Storage Description

TOTALLIG	1111011	7114111-010	rage eterage	Booonpaon		
#1	815.00'	28,80	06 cf Custom	Stage Data (Conic	c) Listed below (Red	calc)
Elevation		urf.Area	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)	
815.0	00	7,517	0	0	7,517	
816.0	00	8,907	8,202	8,202	8,944	
817.0	00	10,296	9,593	17,795	10,375	
818.0	00	11,741	11,011	28,806	11,867	
Device	Routing	Invert	Outlet Device	S		
#1	Discarded	815.00'	6.400 in/hr Ex	filtration over Sur	face area	
#2	Primary	815.00'	12.0" Round	Culvert		
			L= 127.0' CF	PP, projecting, no h	eadwall, Ke= 0.900)
					6.40' S= 0.0677 '/'	Cc= 0.900
			,	w Area= 0.79 sf		
#3	Device 2	815.60'		fice/Grate C= 0.6		
				r flow at low heads		
#4	Device 2	816.80'			ngular Weir 2 End	
#5	Secondary	817.00'				sted Rectangular W
			` ,		0 1.00 1.20 1.40	1.60 1.80
				00 3.50 4.00 4.50		
			, ,	,	2.69 2.68 2.68 2.	.66 2.64 2.64
			2.64 2.65 2.6	35 2.66 2.66 2.68	2.70 2.74	

Discarded OutFlow Max=1.50 cfs @ 12.45 hrs HW=816.89' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.50 cfs)

Primary OutFlow Max=2.19 cfs @ 12.45 hrs HW=816.89' (Free Discharge)


-2=Culvert (Passes 2.19 cfs of 3.52 cfs potential flow)
-3=Orifice/Grate (Orifice Controls 0.96 cfs @ 4.91 fps)

-4=Sharp-Crested Rectangular Weir (Weir Controls 1.23 cfs @ 0.98 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=815.00' (Free Discharge)
5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 9/13/2024 Page 148

Pond 16P: DET 210

Volume

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Page 149

Summary for Pond 17P: DET 220

Inflow Area = 1.110 ac. 0.00% Impervious, Inflow Depth > 6.50" for 100-Year event 8.11 cfs @ 12.13 hrs, Volume= Inflow 0.602 af 6.60 cfs @ 12.17 hrs, Volume= 0.542 af, Atten= 19%, Lag= 2.9 min Outflow 0.28 cfs @ 12.17 hrs, Volume= Discarded = 0.214 af 6.32 cfs @ 12.17 hrs, Volume= 0.328 af Primary Routed to Link 18L: PR POA / B Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af

Routed to Link 18L: PR POA / B

Invert

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 802.96' @ 12.17 hrs Surf.Area= 2,779 sf Storage= 5,189 cf

Plug-Flow detention time= 69.0 min calculated for 0.540 af (90% of inflow) Center-of-Mass det. time= 34.5 min (785.5 - 751.0)

Avail.Storage Storage Description

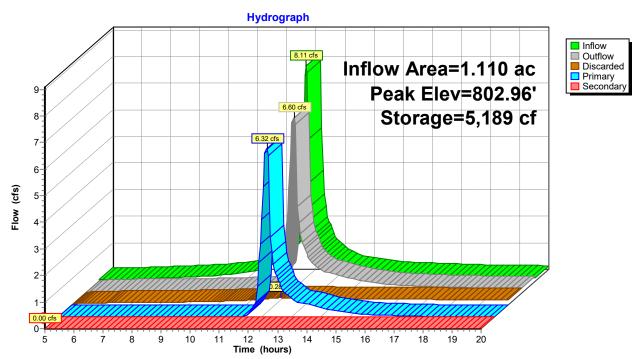
#1	800.00'	8,8	75 cf Custo	m Stage Data (Con	ic) Listed below (Re	calc)
Elevatio		ırf.Area	Inc.Store	Cum.Store	Wet.Area	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)	
800.0		879	0	0	879	
801.0		1,441	1,148	1,148	1,454	
802.0		2,039	1,731	2,880	2,070	
803.0		2,810	2,414	5,294	2,860	
804.0	00	4,412	3,581	8,875	4,476	
Device	Routing	Invert	Outlet Device	200		
					•	
#1	Discarded	800.00'	_	Exfiltration over Su	irtace area	
#2	Primary	800.50'	15.0" Roun			
					eadwall, Ke= 0.900	
					00.00' S= 0.0128 '/'	Cc= 0.900
			,	low Area= 1.23 sf		
#3	Device 2	802.00'	6.0" Vert. O	rifice/Grate $C=0$.	600	
			Limited to w	eir flow at low head	S	
#4	Device 2	802.60'	14.0' long S	harp-Crested Rect	angular Weir 2 End	d Contraction(s)
#5	Secondary	803.00'	10.0' long +	- 3.0 '/' SideZ x 8.0	' breadth Broad-Cre	ested Rectangular Weir
	,				80 1.00 1.20 1.40	
			` ,	3.00 3.50 4.00 4.5		
					2.69 2.68 2.68 2	.66 2.64 2.64

2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74

Discarded OutFlow Max=0.27 cfs @ 12.17 hrs HW=802.95' (Free Discharge) **-1=Exfiltration** (Exfiltration Controls 0.27 cfs)

Primary OutFlow Max=6.31 cfs @ 12.17 hrs HW=802.95' (Free Discharge)

-2=Culvert (Inlet Controls 6.31 cfs @ 5.14 fps)


-3=Orifice/Grate (Passes < 0.79 cfs potential flow)

-4=Sharp-Crested Rectangular Weir (Passes < 9.50 cfs potential flow)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=800.00' (Free Discharge) -5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 9/13/2024 Page 150

Pond 17P: DET 220

Volume

Printed 9/13/2024

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

<u>Page 151</u>

Summary for Pond 19P: PLUNGE POOL 120

Inflow Area = 0.990 ac, 0.00% Impervious, Inflow Depth > 5.60" for 100-Year event
Inflow = 5.41 cfs @ 12.19 hrs, Volume= 0.462 af
Outflow = 5.42 cfs @ 12.17 hrs, Volume= 0.451 af, Atten= 0%, Lag= 0.0 min
Discarded = 0.02 cfs @ 12.17 hrs, Volume= 0.012 af
Primary = 5.41 cfs @ 12.17 hrs, Volume= 0.439 af

Routed to Link 15L: PR POA / A

Invert

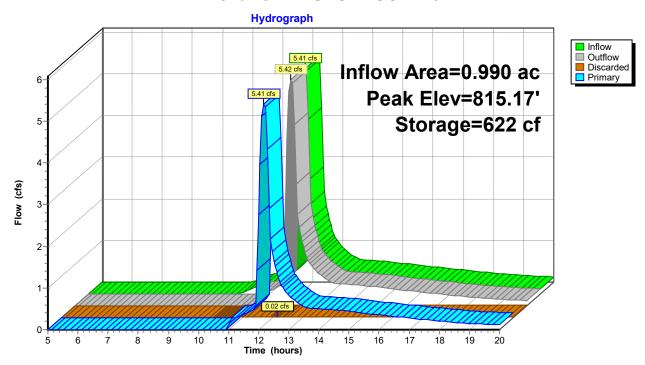
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 815.17' @ 12.17 hrs Surf.Area= 845 sf Storage= 622 cf

Plug-Flow detention time= 13.6 min calculated for 0.449 af (97% of inflow)

Avail Storage Description

Center-of-Mass det. time= 5.0 min (824.2 - 819.2)

VOIGITIC	IIIVCIL	7 (Vall.Otol)	age clorage	Description	
#1	814.00'	1,51	7 cf Custom	Stage Data (Pri	ismatic) Listed below (Recalc)
Elevatio		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
814.0	00	223	0	0	
815.0	00	744	484	484	
816.0	00	1,322	1,033	1,517	
Device	Routing	Invert	Outlet Devices	5	
#1	Discarded	814.00'	0.860 in/hr Ex	filtration over S	Surface area
#2	Primary	815.00'	30.0' long + 3	3.0 '/' SideZ x 8	.0' breadth Broad-Crested Rectangular Wei
	-		Head (feet) 0	.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80
			2.00 2.50 3.0	0 3.50 4.00 4	.50 5.00 5.50
			Coef. (English) 2.43 2.54 2.	70 2.69 2.68 2.68 2.66 2.64 2.64
			2.64 2.65 2.6	5 2.66 2.66 2	.68 2.70 2.74


Discarded OutFlow Max=0.02 cfs @ 12.17 hrs HW=815.17' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

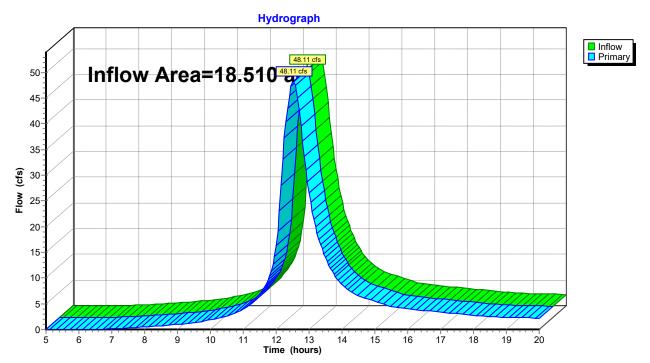
Primary OutFlow Max=5.37 cfs @ 12.17 hrs HW=815.17' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 5.37 cfs @ 1.01 fps)

Printed 9/13/2024 Page 152

LAOD, DILINOF DOOL AOO

HydroCAD® 10.20-4a s/n 08105 © 2023 HydroCAD Software Solutions LLC

Summary for Link 4L: EX POA / A


Inflow Area =

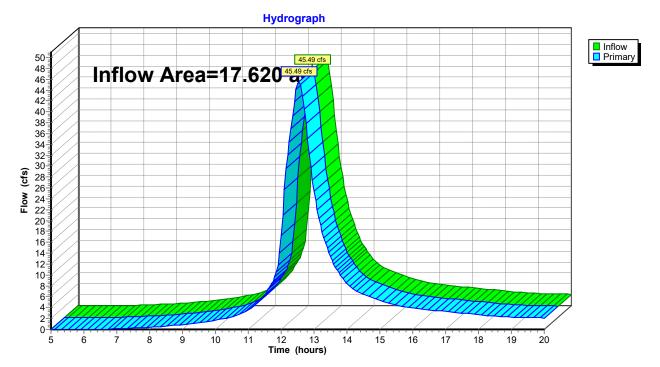
Inflow =

18.510 ac, 0.00% Impervious, Inflow Depth > 4.69" for 100-Year event 48.11 cfs @ 12.52 hrs, Volume= 7.236 af 48.11 cfs @ 12.52 hrs, Volume= 7.236 af, Atten= 0%, Lag= 0.0 min 7.236 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 4L: EX POA / A

Summary for Link 15L: PR POA / A


Inflow Area =

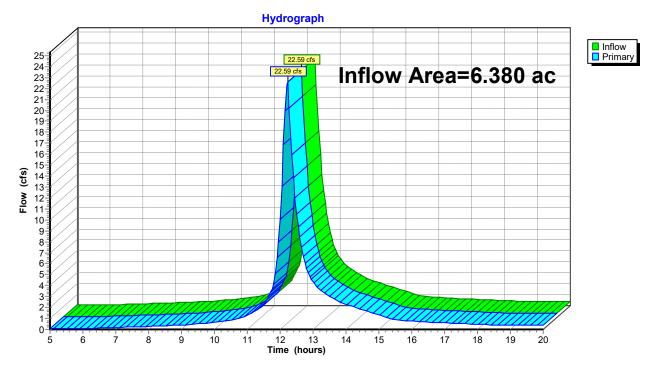
Inflow

17.620 ac, 0.00% Impervious, Inflow Depth > 4.73" for 100-Year event 45.49 cfs @ 12.54 hrs, Volume= 6.947 af 45.49 cfs @ 12.54 hrs, Volume= 6.947 af, Atten= 0%, Lag= 0.0 min 6.947 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 15L: PR POA / A

Summary for Link 18L: PR POA / B


6.380 ac, 0.00% Impervious, Inflow Depth > 3.83" for 100-Year event Inflow Area =

Inflow 2.036 af

22.59 cfs @ 12.22 hrs, Volume= 22.59 cfs @ 12.22 hrs, Volume= 2.036 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 18L: PR POA / B

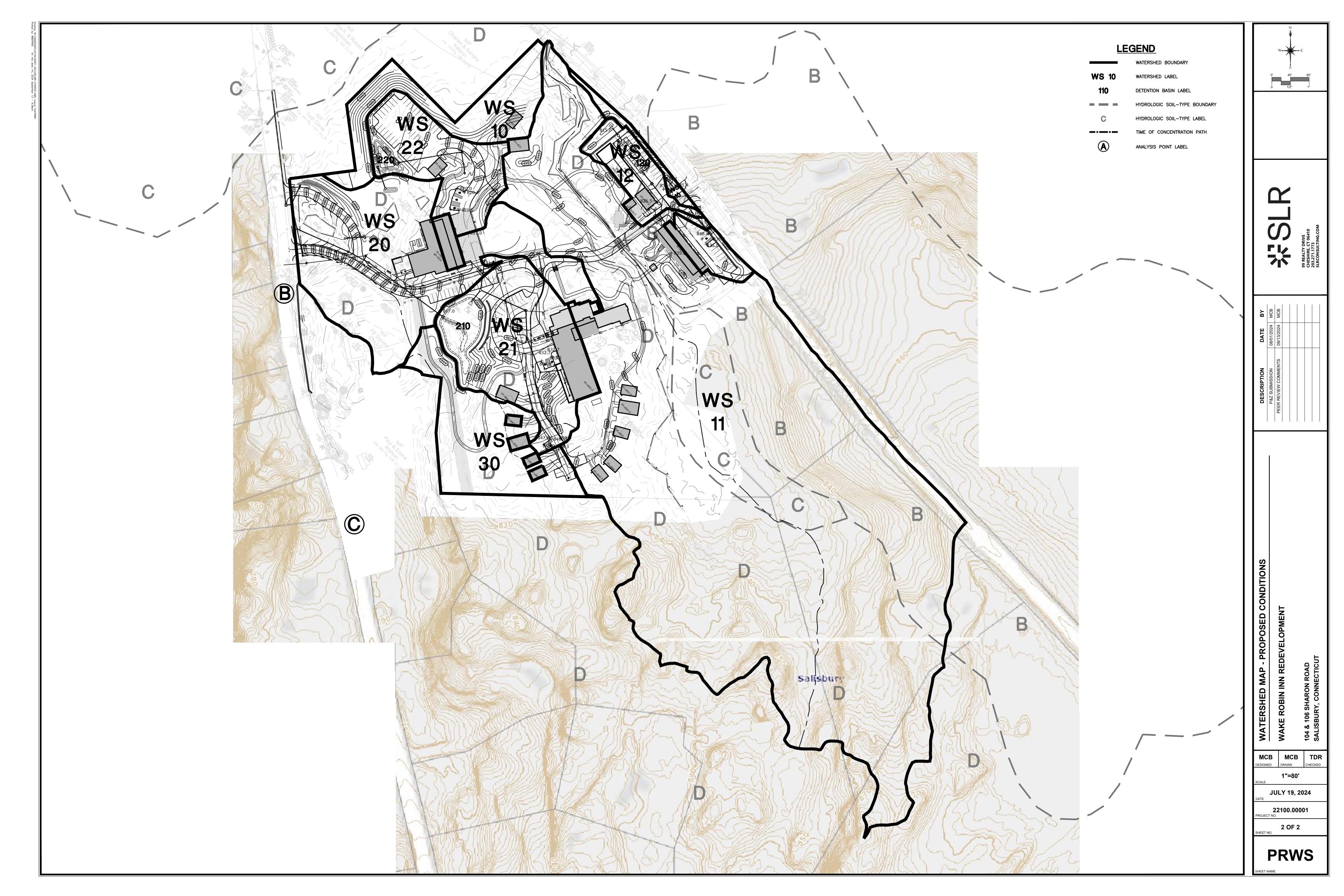
Appendix H Watershed Maps

Wake Robin Inn Redevelopment

104 & 106 Sharon Road, Salisbury, Connecticut

Drainage Report

Prepared for: Aradev LLC 352 Atlantic Avenue, Unit 2 Brooklyn, NY 11217


SLR Project No.: 141.22100.00001

July 19, 2024

Revised August 1, 2024; September 13, 2024

