

Stormwater Report

Road Realignment

280 Between the Lakes Road Salisbury, Connecticut

PREPARED FOR: Great Falls Construction

June 18, 2024 JN: 4010128.001

Report Prepared By: Haley Ward, Inc.

140 Willow Street, Suite 8 | Winsted, Connecticut 06098

Corporate Office

One Merchants Plaza Suite 701 Bangor, ME 04401 T: 207.989.4824

F: 207.989.4881

HALEYWARD.COM

TABLE OF CONTENTS

Project Description

List of Exhibits

Watershed Map

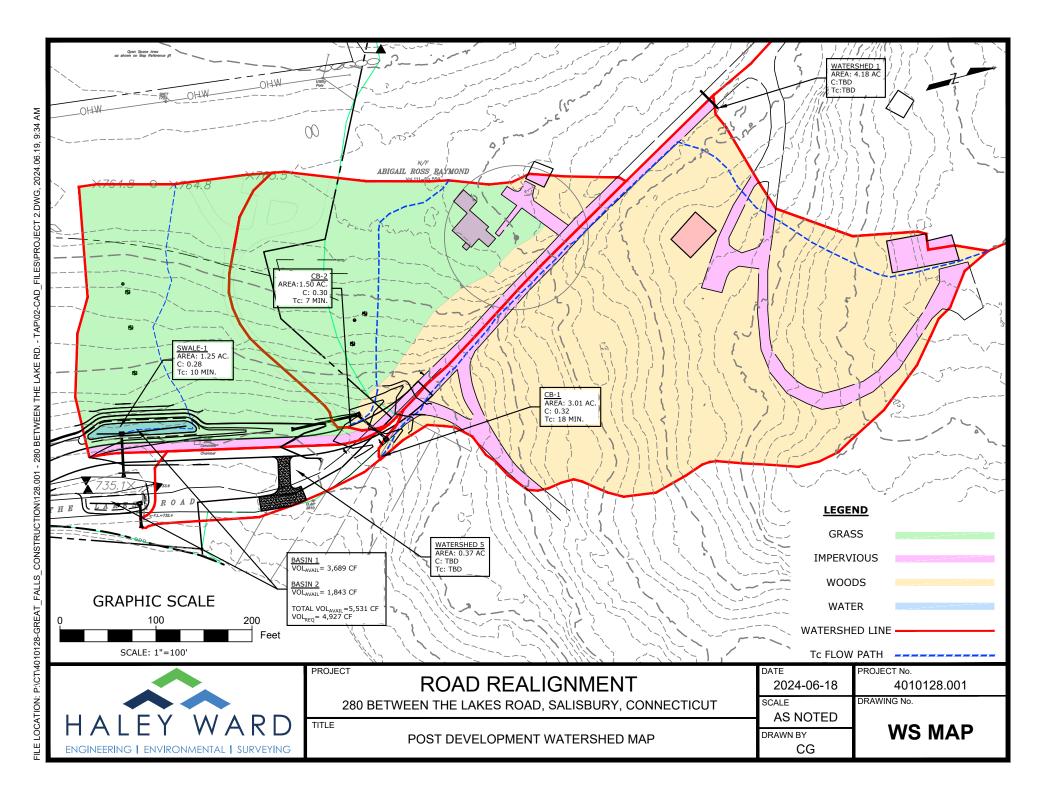
Runoff Coefficients

Time of Concentration Calculations

Pipe Sizing Calculations

Riprap Preformed Scour Hole

Water Quality Volume Calculations


Project Description

This project involves the relocation of a portion of Between the Lakes Road. Several measures will be taken to improve stormwater quality. Runoff will be collected in catch basins and directed to two water quality basins that will capture the Water Quality Volume before the runoff is released to the lake.

The storm sewer network is sized for the 10-year storm based on the Rational Method.

The riprap outlet is sized based on the Connecticut Department of Transportation Drainage Manual.

The stormwater basins are sized for the Water Quality Volume based on the 2024 DEEP Stormwater Quality Manual.

PROJECT: Road Realignment, 280 Between The Lakes Road, Salisbury, CT

SUBJECT: Runoff Coefficient Worksheet

COMP. BY: CG CHK. BY: TAP DATE: 06/18/24

Runoff Coefficients per ConnDOT Drainage Manual - Chapter 6:

Table 6-3 - Recommended Coefficients for Pervious Areas:

		NRCS Hydrologic Soil Group								
Slope	Α	В	C	D						
Flat: (0%-1%)	0.04 - 0.09	0.07 - 0.12	0.11 - 0.16	0.15 - 0.20						
Ave.: (2%-6%)	0.09 - 0.14	0.12 - 0.17	0.16 - 0.21	0.20 - 0.25						
Steep: (> 6%)	0.13 - 0.18	0.18 - 0.24	0.23 - 0.31	0.28 - 0.38						

Table 6-5 - Runoff Coefficients for Impervious Areas

Asphalt	Concrete	Drives &	
Streets	Streets	Walks	Roofs
0.70 - 0.95	0.80 - 0.95	0.75 - 0.85	0.75 - 0.95

<u>Table 6-4 - Recommended Coefficients for Various Selected Land Uses:</u>

	Neighbor-	Single	Multi	Multi		Resi-	Apartment	Light	Heavy	Parks &		Rail	Un-
Downtown	hood	Family	Units	Units		dential	Dwelling	Industrial	Industrial	Cemetery	Play-	Yard	Improved
Areas	Areas	Areas	Detached	Attached	Suburban	(>1.2 Ac.)	Areas	Areas	Areas		grounds	Areas	Areas
0.70 - 0.95	0.50 - 0.70	0.30 - 0.50	0.40 - 0.60	0.60 - 0.75	0.25 - 0.40	0.30 - 0.45	0.50 - 0.70	0.50 - 0.80	0.60 - 0.90	0.10 - 0.25	0.20 - 0.40	0.20 - 0.40	0.10 - 0.30

Calculate Composite Runoff Coefficient and Adjust for Infrequent Storms:

		Asphalt	Grass	Woods							C _A - Runoff (Coefficient A	Adjusted for In	nfrequent Storr	ns
		Streets	HSG B	HSG B	Water	Other	Check		Composite			Recurre	ence Interval		
	Total	(Acres)	(Acres)	(Acre)	(Acre)	(Acres)	S Area		Runoff	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year
Area	Area	C =	C =	C =	C =	C =	(Acres)	SAxC	Coefficient	C _F =	C _F =	C _F =	Max.C _F =	Max.C _F =	Max.C _F =
I.D.	(Acres)	0.90	0.17	0.22	0.90				C'	1.00	1.00	1.00	1.10	1.20	1.25
Watershed 1	4.18	0.46					ERROR	0.413	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
CB-1	3.01	0.45		2.56			3.01	0.968	0.32	0.32	0.32	0.32	0.35	0.39	0.40
CB-2	1.50	0.24	1.01	0.25			1.50	0.443	0.30	0.30	0.30	0.30	0.32	0.35	0.37
Swale-1	1.25	0.15	1.07		0.03		1.25	0.344	0.28	0.28	0.28	0.28	0.30	0.33	0.34
Watershed 5	0.37	0.13					ERROR	0.116	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Total	10.31	1.43				·	ERROR	1.285	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
% Imperv	/ious	14%					-								

(1) Area of individual cover types measured from plans

- (2) Runoff coefficient for individual cover types selected from reference tables above.
- (3) Composite Runoff Coefficient C' = S(A x C) / SA
- (4) Frequency Factors (C_F) from ConnDOT Drainage Manual 2000 Table 6-2
- (5) Per ConnDOT Drainage Manual 2000 Section 6.9.5: $C_A = 1.00$ where $C' * C_F >= 1.00$ $C_A = C' * C_F$ where $C' * C_F < 1.00$
- (6) Watershed 1 will be directed away from the lake.
- (7) Watershed 5 does not drain to the stormwater basins.

SUBJECT: Time of Concentration Calculations

COMP. BY: CG CHK. BY: TAP DATE: 06/18/24

Watershed I.D.: CB-1

Estimate Time of Concentration using the "Velocity Method".

Reference: USDA-NRCS National Engineering Handbook - Part 630 -Hydrology; Chapter 15 - Time of Concentration and USDA-NRCS TR-55 - June 1986

SHEET FLOW

Step No.	Data	Seg. I.D.:	1	Seg. I.D.:	2	
1A	Select Surface Description Identifier (Table 3-1)		F			
1B	Surface Description (Table 3-1)		Grass: Dense Grasses			
2	Manning's Roughness Coefficient "n" (Table 3-1)	0.2	240			
3	Flow Length "L" (FT) - Note: Total L must be <= 100 FT	8	80			
4	Two-Year 24-Hour Rainfall "P ₂ " (Inches)	3.	09			
5	Land Slope "S" (FT / FT)	0.0	014			
6	Travel Time "T _T " (Hours)	0.2	234			C

$$T_{T} = \frac{0.007 \times (n \times L)^{0.8}}{P_{2}^{0.5} \times S^{0.4}}$$

NRCS TR-55 Table 3-1

		Manning's
Identifier	Surface Description	"n"
А	Smooth Surfaces (Conc., Asph., Grav., Bare Soil)	0.011
В	Fallow (No Residue)	0.050
С	Cultivated Soils (Residue Cover <= 20%)	0.060
D	Cultivated Soils (Residue Cover > 20%)	0.170
Е	Grass: Short Grass Prairie	0.150
F	Grass: Dense Grasses	0.240
G	Grass: Bermuda Grass	0.410
Н	Range (Natural)	0.130
I	Woods: Light Underbrush	0.400
J	Woods: Dense Underbrush	0.800

SHALLOW CONCENTRATED FLOW

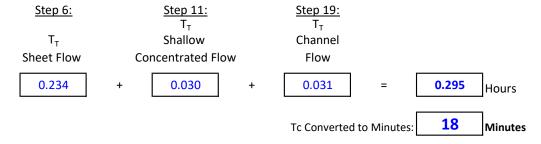
				Segmo	ent I.D.		
Step No.	Data	3	4	5	6	7	8
7	Surface Description (Paved or Unpaved)	U	U	Р	Р		
8	Flow Length "L" (FT)	83	67	141	100		
9	Watercourse Slope "S" (FT/FT)	0.0770	0.1540	0.0730	0.0080		
10	Average Velocity "V" (FT/SEC) Figure 3-1	4.48	6.33	5.49	1.82		
11	Travel Time "T _T " (Hours)	0.005	0.003	0.007	0.015		
	L Unpaved Condition:	•	Paved Cond	ition:	•	T _T =	0.030

Unpaved Condition: $V = 16.1345 \times S^{0.5}$

Paved Condition:

 $V = 20.3282 \times S^{0.5}$

SUBJECT: Time of Concentration Calculations


COMP. BY: ____ CG ___ CHK. BY: ___ TAP ___ DATE: _06/18/24

OPEN CHANNEL FLOW

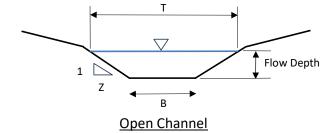
Note: Hydraulic properties estimated from the worksheets that follow below.

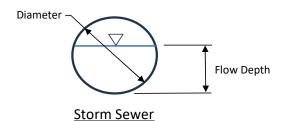
	Segment I.D.									
Data	7	8	9	10	11	12	13			
Channel or Pipe Flow? (C or P)	С									
Cross Sectional Flow Area (SF)	1.08									
Wetted Perimeter (FT)	15.00									
Hydraulic Radius (FT)	0.07									
Channel or Pipe Slope (FT/FT)	0.1020									
Manning's Roughness Coefficient	0.026									
Velocity (FT/SEC)	3.16									
Flow Length (L) (FT)	348									
Travel Time "T _T " (Hours)	0.031									
T_= L				•		T _T =	0.031			
	Channel or Pipe Flow? (C or P) Cross Sectional Flow Area (SF) Wetted Perimeter (FT) Hydraulic Radius (FT) Channel or Pipe Slope (FT/FT) Manning's Roughness Coefficient Velocity (FT/SEC) Flow Length (L) (FT)	Channel or Pipe Flow? (C or P) Cross Sectional Flow Area (SF) Wetted Perimeter (FT) Hydraulic Radius (FT) Channel or Pipe Slope (FT/FT) Manning's Roughness Coefficient Velocity (FT/SEC) Flow Length (L) (FT) Travel Time "T _T " (Hours) C 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.09 1.00	Channel or Pipe Flow? (C or P) Cross Sectional Flow Area (SF) Wetted Perimeter (FT) Hydraulic Radius (FT) Channel or Pipe Slope (FT/FT) Manning's Roughness Coefficient Velocity (FT/SEC) Flow Length (L) (FT) Travel Time "T _T " (Hours) C C 1.08 1.08 1.08 1.08 1.09 1.000	Channel or Pipe Flow? (C or P) Cross Sectional Flow Area (SF) Wetted Perimeter (FT) Hydraulic Radius (FT) Channel or Pipe Slope (FT/FT) Manning's Roughness Coefficient Velocity (FT/SEC) Flow Length (L) (FT) Travel Time "T _T " (Hours) C 1.08 1.08 1.08 1.00 1.020 1	Data 7 8 9 10 Channel or Pipe Flow? (C or P) C C Cross Sectional Flow Area (SF) 1.08 Wetted Perimeter (FT) 15.00 Hydraulic Radius (FT) 0.07 Channel or Pipe Slope (FT/FT) 0.1020 Manning's Roughness Coefficient 0.026 Velocity (FT/SEC) 3.16 Flow Length (L) (FT) 348 Travel Time "T _T " (Hours) 0.031	Data 7 8 9 10 11 Channel or Pipe Flow? (C or P) C C C Cross Sectional Flow Area (SF) 1.08 C C Wetted Perimeter (FT) 15.00 C C Hydraulic Radius (FT) 0.07 C C Channel or Pipe Slope (FT/FT) 0.1020 C C Manning's Roughness Coefficient 0.026 C C Velocity (FT/SEC) 3.16 C C Flow Length (L) (FT) 348 C C Travel Time "T _T " (Hours) 0.031 C C	Data 7 8 9 10 11 12 Channel or Pipe Flow? (C or P) C D C D			

Step 20: Watershed Time of Concentration (Add T_T from Steps 6, 11, and 19):

Notes:

- 1. The sum of all sheet-flow travel lengths is <= 100 FT as recommended in NRCS NEH Part 630 Chapter 15.
- 2. The sum of sheet-flow travel length is <= 10% of total hydraulic length (OK)
- 3. The sheet flow travel time is less than 80% of Tc (OK)
- 4. The sum of shallow-concentrated flow segment lengths is < 1,000 FT (OK)


SUBJECT: Time of Concentration Calculations


COMP. BY: CG CHK. BY: TAP DATE: 06/18/24

The following worksheets estimate velocity and flow rate for a channel with simple geometry or a round storm sewer. The calculations are used to estimate travel time for open-channel flow conditions. Individual segments may be either channel flow or pipe flow, but not both.

Notes:

- 1. Flow rate in the various segments should gradually build (in general proportion to drainage area) toward the computed two-year recurrence-interval flood at the point of analysis.
- 2. In the case of flow in natural or man-made channels, flow depth should not exceed bank-full height.

Open Channel Segments

					Segment I.D			
	ltem	7	8	9	10	11	12	13
	Flow Depth (FT)	0.12						
el stry	Channel Slope (FT/FT)	0.1020						
Channel Geometry	Manning's Roughness Coefficient	0.026						
Ch Geo	Bank Slope (Z:1)	50.00						
	B - Channel Base Width (FT)	3.00						
	T - Flow Top Width (FT)	15						
- S	Flow Area (SF)	1.08						
Channel Hydraulics	Wetted Perimeter (FT)	15.00						
:hai /dra	Hydraulic Radius (FT)	0.072						
~ £	Flow (CFS)	3.41						
	Average Velocity (FT/SEC)	3.16						

Pipe Segments

					Segment I.D.			
	Item	7	8	9	10	11	12	13
	Pipe Diameter (FT)							
istic	Pipe Manning's Coefficient							
Characteristics	Pipe Slope (FT/FT)							
arac	Full Pipe Area (SF)							0.0000
CP ₃	Hydraulic Radius - Full Pipe (FT)							0.000
Pipe	Q _{FULL} - Full Pipe Flow (CFS)							#DIV/0!
<u>~</u>	V _{FULL} - Full Pipe Velocity (FT/SEC)							#DIV/0!
	R _D - Flow Depth Ratio							
	Flow Depth (FT)							0.00
ics	Cross Sectional Area of Flow (SF)							0.000
aul	Wetted Perimeter (FT)							0.000
ydr	Hydraulic Radius (FT)							#DIV/0!
Pipe Hydraulics	Q - Estimated Flow in Pipe (CFS)							#DIV/0!
Pip	V - Estimated Velocity in Pipe (FT/SEC)							#DIV/0!
	Q / Q _{FULL}							#DIV/0!
	V / V _{FULL}							#DIV/0!

SUBJECT: Time of Concentration Calculations

COMP. BY: CG CHK. BY: DATE: 6/181/2024

Watershed I.D.: CB-2

Estimate Time of Concentration using the "Velocity Method".

Reference: USDA-NRCS National Engineering Handbook - Part 630 -Hydrology; Chapter 15 - Time of Concentration and USDA-NRCS TR-55 - June 1986

SHEET FLOW

Step No.	Data	Seg. I.D.:	1	Seg. I.D.:	2
1A	Select Surface Description Identifier (Table 3-1)		F		
1B	Surface Description (Table 3-1)	Grass: Dense Grasses			
2	Manning's Roughness Coefficient "n" (Table 3-1)	0.2	240		
3	Flow Length "L" (FT) - Note: Total L must be <= 100 FT	3	0		
4	Two-Year 24-Hour Rainfall "P ₂ " (Inches)	3.	09		
5	Land Slope "S" (FT / FT)	0.0)25		
6	Travel Time "T _T " (Hours)	0.0	084		

$$T_{T} = \frac{0.007 \times (n \times L)^{0.8}}{P_{2}^{0.5} \times S^{0.4}}$$

NRCS TR-55 Table 3-1

		Manning's
Identifier	Surface Description	"n"
Α	Smooth Surfaces (Conc., Asph., Grav., Bare Soil)	0.011
В	Fallow (No Residue)	0.050
С	Cultivated Soils (Residue Cover <= 20%)	0.060
D	Cultivated Soils (Residue Cover > 20%)	0.170
Е	Grass: Short Grass Prairie	0.150
F	Grass: Dense Grasses	0.240
G	Grass: Bermuda Grass	0.410
Н	Range (Natural)	0.130
I	Woods: Light Underbrush	0.400
J	Woods: Dense Underbrush	0.800

SHALLOW CONCENTRATED FLOW

				Segme	ent I.D.		
Step No.	Data	3	4	5	6	7	8
7	Surface Description (Paved or Unpaved)	U	C	Р			
8	Flow Length "L" (FT)	82	99	64			
9	Watercourse Slope "S" (FT/FT)	0.0250	0.1020	0.1530			
10	Average Velocity "V" (FT/SEC) Figure 3-1	2.55	5.15	7.95			
11	Travel Time "T _T " (Hours)	0.009	0.005	0.002			

$$T_T = \frac{L}{3600 \times V}$$

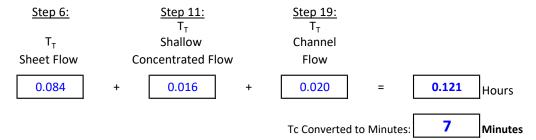
Unpaved Condition: $V = 16.1345 \times S^{0.5}$

Paved Condition:

0.016

 $V = 20.3282 \times S^{0.5}$

SUBJECT: Time of Concentration Calculations


COMP. BY: CG CHK. BY: TAP DATE: 6/181/2024

OPEN CHANNEL FLOW

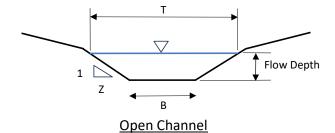
Note: Hydraulic properties estimated from the worksheets that follow below.

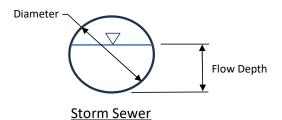
					Segment I.D.			
Step No.	Data	7	8	9	10	11	12	13
12A	Channel or Pipe Flow? (C or P)	С						
12B	Cross Sectional Flow Area (SF)	5.40						
13	Wetted Perimeter (FT)	15.06						
14	Hydraulic Radius (FT)	0.36						
14	Channel or Pipe Slope (FT/FT)	0.0750						
16	Manning's Roughness Coefficient	0.400						
17	Velocity (FT/SEC)	0.51						
18	Flow Length (L) (FT)	37						
19	Travel Time "T _T " (Hours)	0.020						
	T _T =L			•	•		T _T =	0.020
	3600 x V						•	

Step 20: Watershed Time of Concentration (Add T_T from Steps 6, 11, and 19):

Notes:

- 1. The sum of all sheet-flow travel lengths is <= 100 FT as recommended in NRCS NEH Part 630 Chapter 15.
- 2. The sum of sheet-flow travel length is <= 10% of total hydraulic length (OK)
- 3. The sheet flow travel time is less than 80% of Tc (OK)
- 4. The sum of shallow-concentrated flow segment lengths is < 1,000 FT (OK)


SUBJECT: Time of Concentration Calculations


COMP. BY: CG CHK. BY: TAP DATE: 6/181/2024

The following worksheets estimate velocity and flow rate for a channel with simple geometry or a round storm sewer. The calculations are used to estimate travel time for open-channel flow conditions. Individual segments may be either channel flow or pipe flow, but not both.

Notes:

- 1. Flow rate in the various segments should gradually build (in general proportion to drainage area) toward the computed two-year recurrence-interval flood at the point of analysis.
- 2. In the case of flow in natural or man-made channels, flow depth should not exceed bank-full height.

Open Channel Segments

					Segment I.D			
	ltem	7	8	9	10	11	12	13
	Flow Depth (FT)	0.60						
el etry	Channel Slope (FT/FT)	0.0750						
Channel Geometry	Manning's Roughness Coefficient	0.4						
Ch	Bank Slope (Z:1)	10.00						
	B - Channel Base Width (FT)	3.00						
	T - Flow Top Width (FT)	15						
- S	Flow Area (SF)	5.40						
Channel Hydraulics	Wetted Perimeter (FT)	15.06						
Chai /dra	Hydraulic Radius (FT)	0.359						
O £	Flow (CFS)	2.77						
	Average Velocity (FT/SEC)	0.51						

Pipe Segments

					Segment I.D.			
	Item	7	8	9	10	11	12	13
	Pipe Diameter (FT)							
istic	Pipe Manning's Coefficient							
Characteristics	Pipe Slope (FT/FT)							
arac	Full Pipe Area (SF)							0.0000
CP ₃	Hydraulic Radius - Full Pipe (FT)							0.000
Pipe	Q _{FULL} - Full Pipe Flow (CFS)							#DIV/0!
<u>~</u>	V _{FULL} - Full Pipe Velocity (FT/SEC)							#DIV/0!
	R _D - Flow Depth Ratio							
	Flow Depth (FT)							0.00
ics ics	Cross Sectional Area of Flow (SF)							0.000
aul	Wetted Perimeter (FT)							0.000
ydr	Hydraulic Radius (FT)							#DIV/0!
Pipe Hydraulics	Q - Estimated Flow in Pipe (CFS)							#DIV/0!
Pip	V - Estimated Velocity in Pipe (FT/SEC)							#DIV/0!
	Q / Q _{FULL}							#DIV/0!
	V / V _{FULL}							#DIV/0!

SUBJECT: Time of Concentration Calculations

COMP. BY: CG CHK. BY: DATE: 06/18/24

Watershed I.D.: Swale-1

Estimate Time of Concentration using the "Velocity Method".

Reference: USDA-NRCS National Engineering Handbook - Part 630 -Hydrology; Chapter 15 - Time of Concentration and USDA-NRCS TR-55 - June 1986

SHEET FLOW

Step No.	Data	Seg. I.D.:	1	Seg. I.D.:	2	
1A	Select Surface Description Identifier (Table 3-1)		F			
1B	Surface Description (Table 3-1)	Grass: Der	ise Grasses			
2	Manning's Roughness Coefficient "n" (Table 3-1)	0.2	240			
3	Flow Length "L" (FT) - Note: Total L must be <= 100 FT	3	3			
4	Two-Year 24-Hour Rainfall "P ₂ " (Inches)	3.	09			
5	Land Slope "S" (FT / FT)	0.0)10			T-
6	Travel Time "T _T " (Hours)	0.1	132			0.1

$$T_{T} = \frac{0.007 \times (n \times L)^{0.8}}{P_{2}^{0.5} \times S^{0.4}}$$

NRCS TR-55 Table 3-1

		Manning's
Identifier	Surface Description	"n"
Α	Smooth Surfaces (Conc., Asph., Grav., Bare Soil)	0.011
В	Fallow (No Residue)	0.050
С	Cultivated Soils (Residue Cover <= 20%)	0.060
D	Cultivated Soils (Residue Cover > 20%)	0.170
Е	Grass: Short Grass Prairie	0.150
F	Grass: Dense Grasses	0.240
G	Grass: Bermuda Grass	0.410
Н	Range (Natural)	0.130
I	Woods: Light Underbrush	0.400
J	Woods: Dense Underbrush	0.800

SHALLOW CONCENTRATED FLOW

				Segme	ent I.D.		
Step No.	Data	3	4	5	6	7	8
7	Surface Description (Paved or Unpaved)	U	U	Р			
8	Flow Length "L" (FT)	12	60	62			
9	Watercourse Slope "S" (FT/FT)	0.0100	0.1200	0.0740			
10	Average Velocity "V" (FT/SEC) Figure 3-1	1.61	5.59	5.53			
11	Travel Time "T _T " (Hours)	0.002	0.003	0.003			

Unpaved Condition:

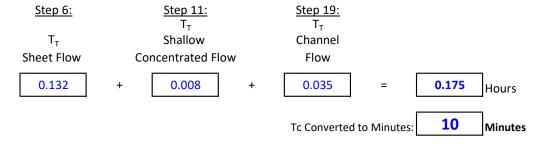
Paved Condition:

0.008

 $V = 16.1345 \times S^{0.5}$

 $V = 20.3282 \times S^{0.5}$

SUBJECT: Time of Concentration Calculations


COMP. BY: ____ CG ___ CHK. BY: ____ TAP ___ DATE: __06/18/24

OPEN CHANNEL FLOW

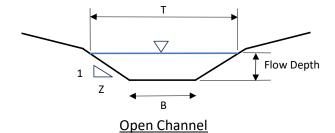
Note: Hydraulic properties estimated from the worksheets that follow below.

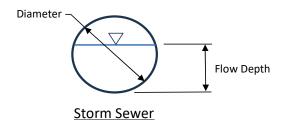
		Segment I.D.												
Data	7	8	9	10	11	12	13							
Channel or Pipe Flow? (C or P)	С	С												
Cross Sectional Flow Area (SF)	1.00	0.56												
Wetted Perimeter (FT)	7.02	5.61												
Hydraulic Radius (FT)	0.14	0.10												
Channel or Pipe Slope (FT/FT)	0.1180	0.0130												
Manning's Roughness Coefficient	0.150	0.011												
Velocity (FT/SEC)	0.93	3.31												
Flow Length (L) (FT)	92	85												
Travel Time "T _T " (Hours)	0.028	0.007												
T _T =L	•				•	T _T =	0.035							
	Channel or Pipe Flow? (C or P) Cross Sectional Flow Area (SF) Wetted Perimeter (FT) Hydraulic Radius (FT) Channel or Pipe Slope (FT/FT) Manning's Roughness Coefficient Velocity (FT/SEC) Flow Length (L) (FT) Travel Time "T _T " (Hours)	Channel or Pipe Flow? (C or P) Cross Sectional Flow Area (SF) Wetted Perimeter (FT) Hydraulic Radius (FT) Channel or Pipe Slope (FT/FT) Manning's Roughness Coefficient Velocity (FT/SEC) Flow Length (L) (FT) Travel Time "T _T " (Hours) Cnool 1.00 1.00 0.14 0.150 0.150 0.93 Flow Length (L) (FT) 0.028	Channel or Pipe Flow? (C or P) C C Cross Sectional Flow Area (SF) 1.00 0.56 Wetted Perimeter (FT) 7.02 5.61 Hydraulic Radius (FT) 0.14 0.10 Channel or Pipe Slope (FT/FT) 0.1180 0.0130 Manning's Roughness Coefficient 0.150 0.011 Velocity (FT/SEC) 0.93 3.31 Flow Length (L) (FT) 92 85 Travel Time "T _T " (Hours) 0.028 0.007	Channel or Pipe Flow? (C or P) C C Cross Sectional Flow Area (SF) 1.00 0.56 Wetted Perimeter (FT) 7.02 5.61 Hydraulic Radius (FT) 0.14 0.10 Channel or Pipe Slope (FT/FT) 0.1180 0.0130 Manning's Roughness Coefficient 0.150 0.011 Velocity (FT/SEC) 0.93 3.31 Flow Length (L) (FT) 92 85 Travel Time "T _T " (Hours) 0.028 0.007	Data 7 8 9 10 Channel or Pipe Flow? (C or P) C C C Cross Sectional Flow Area (SF) 1.00 0.56 O.56 Wetted Perimeter (FT) 7.02 5.61 O.10 Hydraulic Radius (FT) 0.14 0.10 O.010 Channel or Pipe Slope (FT/FT) 0.1180 0.0130 Manning's Roughness Coefficient 0.150 0.011 Velocity (FT/SEC) 0.93 3.31 Flow Length (L) (FT) 92 85 Travel Time "T _T " (Hours) 0.028 0.007	Data 7 8 9 10 11 Channel or Pipe Flow? (C or P) C C C Cross Sectional Flow Area (SF) 1.00 0.56 Wetted Perimeter (FT) 7.02 5.61 Hydraulic Radius (FT) 0.14 0.10 Channel or Pipe Slope (FT/FT) 0.1180 0.0130 Manning's Roughness Coefficient 0.150 0.011 Velocity (FT/SEC) 0.93 3.31 Flow Length (L) (FT) 92 85 Travel Time "T _T " (Hours) 0.028 0.007	Data 7 8 9 10 11 12 Channel or Pipe Flow? (C or P) C C C C Cross Sectional Flow Area (SF) 1.00 0.56 C C Wetted Perimeter (FT) 7.02 5.61 C C C Hydraulic Radius (FT) 0.14 0.10 C D C C C D D D D D D D D D D							

Step 20: Watershed Time of Concentration (Add T_T from Steps 6, 11, and 19):

Notes:

- 1. The sum of all sheet-flow travel lengths is <= 100 FT as recommended in NRCS NEH Part 630 Chapter 15.
- 2. The sum of sheet-flow travel length is <= 10% of total hydraulic length (OK)
- 3. The sheet flow travel time is less than 80% of Tc (OK)
- 4. The sum of shallow-concentrated flow segment lengths is < 1,000 FT (OK)

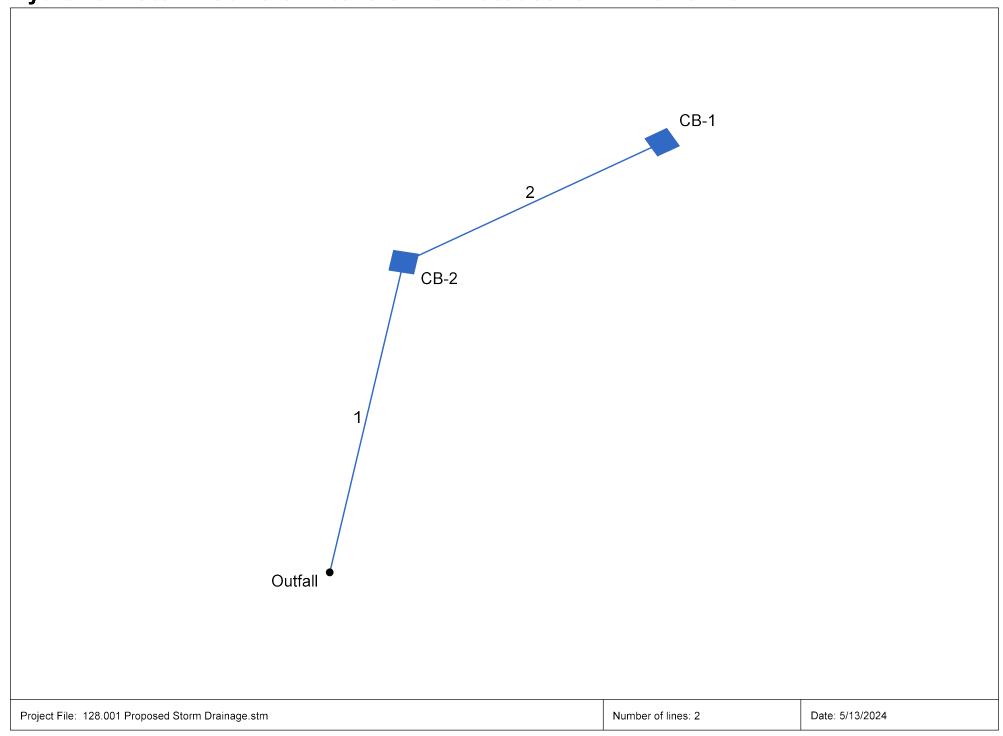

SUBJECT: Time of Concentration Calculations


COMP. BY: CG CHK. BY: TAP DATE: 06/18/24

The following worksheets estimate velocity and flow rate for a channel with simple geometry or a round storm sewer. The calculations are used to estimate travel time for open-channel flow conditions. Individual segments may be either channel flow or pipe flow, but not both.

Notes:

- 1. Flow rate in the various segments should gradually build (in general proportion to drainage area) toward the computed two-year recurrence-interval flood at the point of analysis.
- 2. In the case of flow in natural or man-made channels, flow depth should not exceed bank-full height.


Open Channel Segments

					Segment I.D			
	ltem	7	8	9	10	11	12	13
	Flow Depth (FT)	0.20	0.13					
lel stry	Channel Slope (FT/FT)	0.1180	0.0130					
Channel Geometry	Manning's Roughness Coefficient	0.15	0.011					
Ch Gec	Bank Slope (Z:1)	10.00	10.00					
_	B - Channel Base Width (FT)	3.00	3.00					
	T - Flow Top Width (FT)	7	5.6					
_ S	Flow Area (SF)	1.00	0.56					
Channel Hydraulics	Wetted Perimeter (FT)	7.02	5.61					
:haı /dra	Hydraulic Radius (FT)	0.142	0.100					
of	Flow (CFS)	0.93	1.85					
	Average Velocity (FT/SEC)	0.93	3.31					

Pipe Segments

					Segment I.D.	ı		
	Item	7	8	9	10	11	12	13
	Pipe Diameter (FT)							
istic	Pipe Manning's Coefficient							
Characteristics	Pipe Slope (FT/FT)							
rac	Full Pipe Area (SF)							0.0000
CP ₃	Hydraulic Radius - Full Pipe (FT)							0.000
Pipe	Q _{FULL} - Full Pipe Flow (CFS)							#DIV/0!
<u>-</u>	V _{FULL} - Full Pipe Velocity (FT/SEC)							#DIV/0!
	R _D - Flow Depth Ratio							
	Flow Depth (FT)							0.00
ics	Cross Sectional Area of Flow (SF)							0.000
Pipe Hydraulics	Wetted Perimeter (FT)							0.000
ydr	Hydraulic Radius (FT)							#DIV/0!
ā T	Q - Estimated Flow in Pipe (CFS)							#DIV/0!
Pip	V - Estimated Velocity in Pipe (FT/SEC)							#DIV/0!
	Q / Q _{FULL}							#DIV/0!
	V / V _{FULL}							#DIV/0!

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Tabulation

tatio	n	Len	Drng A	rea	Rnoff	Area x	C	Тс		Rain	Total	Сар	Vel	Pipe		Invert El	ev	HGL Ele	ev.	Grnd / R	im Elev	Line ID
ine	To Line		Incr	Total	coeff	Incr	Total	Inlet	Syst	(I)	flow	fuli		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End		1.50	4.51	0.30	0.45	1.41	7.0	18.2	3.6	5.14	8.95	4.94	15	1.64	738.10	739.10	739.18	740.02	739.40	741.20	Pipe from CB
2	1	46.3	3.01	3.01	0.32	0.96	0.96	18.0	18.0	3.7	3.52	7.27	4.09	15	1.08	739.10	739.60	740.02	740.36	741.20	741.80	Pipe from CB
																	<u> </u>					

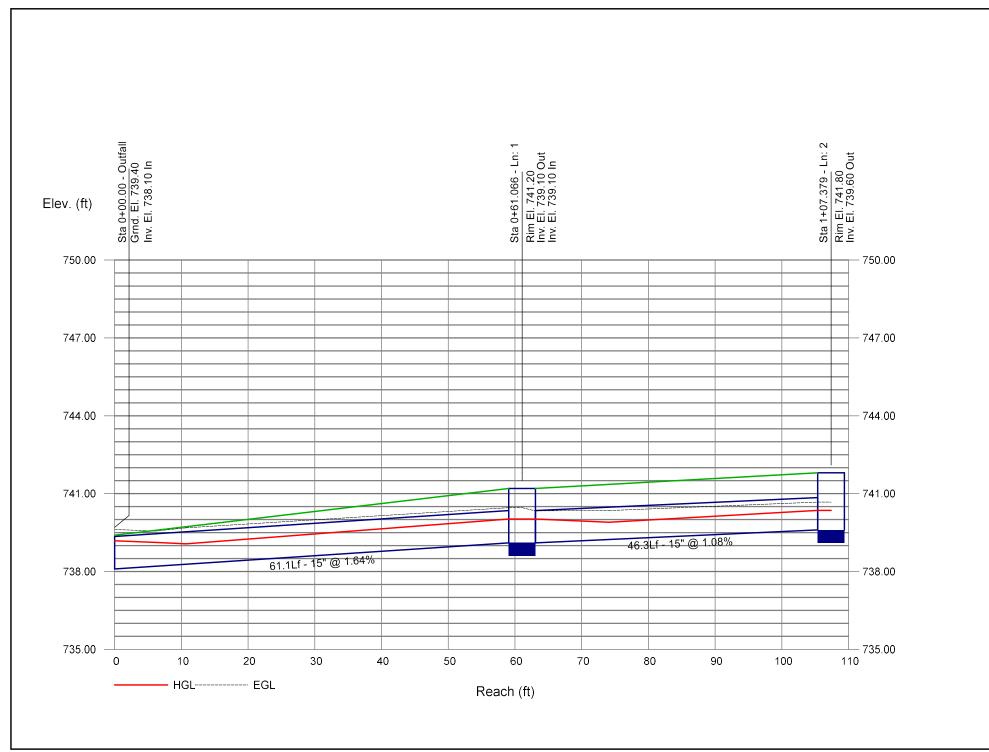
Number of lines: 2

NOTES:Intensity = 30.48 / (Inlet time + 3.30) ^ 0.69; Return period =Yrs. 10; c = cir e = ellip b = box

Project File: 128.001 Proposed Storm Drainage.stm

Run Date: 5/13/2024

Inlet Report


Line Inlet ID Q = Q Q Junc Curb Inlet Grate Inlet No CIA carry capt Byp Type						G	utter				Inlet			Вур								
No		CIA (cfs)			(cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
1	CB-2	2.72	0.00	2.72	0.00	DrGrt	0.0	0.00	3.12	1.35	2.31	Sag	2.00	0.020	0.020	0.013	0.25	27.17	0.25	27.17	0.0	Off
2	CB-1	3.52	0.00	1.01	2.52	DrGrt	0.0	0.00	0.00	1.35	2.31	0.020	2.00	0.020	0.020	0.013	0.14	16.10	0.14	16.10	0.0	Off
													<u> </u>									

Project File: 128.001 Proposed Storm Drainage.stm

Number of lines: 2

Run Date: 5/13/2024

NOTES: Inlet N-Values = 0.016; Intensity = 30.48 / (Inlet time + 3.30) ^ 0.69; Return period = 10 Yrs.; * Indicates Known Q added. All curb inlets are throat.

SUBJECT: Peformed Scour Hole Design-Basin 2

COMP. BY: ____CG___ CHK. BY: ___TAP ___ DATE: _06/18/24

Structure: Basin #2

Data Input:

Q =	5.33	CFS	Design discharge
S _P =	1.20	FT	Circular pipe I.D. or maximum inside span for non-circular pipe
$R_P =$	1.20	FT	Maximum inside pipe rise. Set $R_P = S_P$ for circular sections
INV _{OUT} =	732.50	FT	Elevation of invert at culvert outlet
$E_{TW} =$	732.79		Elevation of tailwater at culvert outlet
TW =	0.29	FT	Tail water depth

Available Riprap Sizes:

From ConnDOT Drainage Manual 2000 - Table 7-2 & FHWA - HEC-11 Design of Riprap Revetments

Type No.	Description	D ₅₀ (FT)
1	Special Riprap	0.083
2	Modified Riprap	0.417
3	Intermediate Riprap	0.667
4	Facing Riprap	0.950
5	Standard Riprap	1.250
6	Light Riprap	1.300
7	Quarter-Ton Riprap	1.800
8	Half-Ton Riprap	2.250
9	One-Ton Riprap	2.850
10	Two-Ton Riprap	3.600

SUBJECT: Peformed Scour Hole Design-Basin 2

COMP. BY: CG CHK. BY: TAP DATE: 06/18/24

Structure: Basin #2

For Type 1 Preformed Scour Hole (Depression = 0.5 R_P):

$$d_{50} = 0.31$$
 FT $d_{50} = (0.0125 R_P^2 / TW) \times (Q / R_P^{2.5})^{1.333}$

Minimum riprap size required for a stable scour hole

Select Type: 3 Intermediate Riprap $D_{50} = 0.667$ FT

Comment: OK - D50 Size for selected riprap equals or exceeds minimum required D50 size

 $2S_P = 2.4$ FT Floor Width

 $3S_P = 3.6$ FT Floor Length

F = 0.60 FT Basin Depression: $F = 0.5R_P$ for Type 1 Preformed Scour Hole

C = 7.2 FT Basin Length: $C = 3S_P + 6F$

B = 6.0 FT Basin Inlet and Outlet Width $B = 2S_P + 6F$

For Type 2 Preformed Scour Hole (Depression = 1.0 R_P):

 $d_{50} = 0.21$ FT $d_{50} = (0.0082R_P^2 / TW) \times (Q / R_P^{2.5})^{1.333}$

Minimum riprap size required for a stable scour hole

Select Type: 3 Intermediate Riprap $D_{50} = 0.667$ F1

Comment: OK - D50 Size for selected riprap equals or exceeds minimum required D50 size

 $2S_P = 2.4$ FT Floor Width

 $3S_P =$ 3.6 FT Floor Length

F = 1.2 FT Basin Depression: $F = 1.0 R_P$ for Type 2 Preformed Scour Hole

C = 10.8 FT Basin Length: $C = 3S_P + 6F$

B = 9.6 FT Basin Inlet and Outlet Width $B = 2S_P + 6F$

SUBJECT: Peformed Scour Hole Design-Basin 2

COMP. BY: CG CHK. BY: TAP DATE: 06/18/24

Structure: Basin #2

Figure 11-15 from ConnDOT Drainage Manual 2000

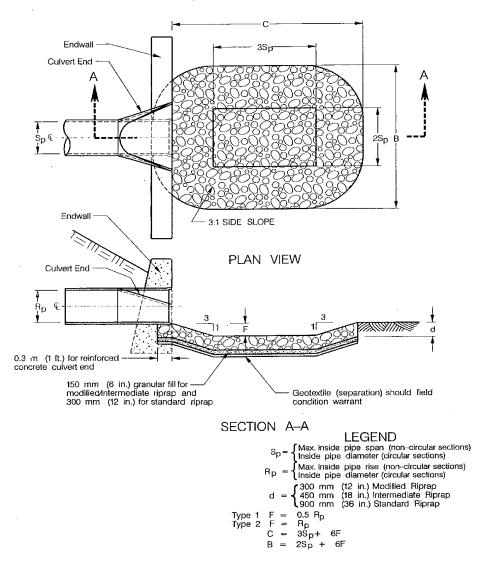


Figure 11-15 Preformed Scour Hole Type 1 and Type 2

PROJECT: Road Realignment, 280 Between The Lakes Road, Salisbury, CT

SUBJECT: Water Quality Volume and Flow Calculations

COMP. BY: CG CHK. BY: TAP DATE: 06/18/24

I. Determine Volume of Water Quality Basin

WQV = (1.3"(R)(A))/12

Where:

WQV = Water Quality Volume (ac-ft)
R = Volumetric Runoff Coefficient

= 0.05+0.009(I)

Percent Impervious Cover (whole number)

A = Site Area (acres) = Watershed area excluding bottom of basin

Watershed	Area (acres)	Impervious	Coefficient	Volume (ac-ft)	Volume (CF)
CB-1	3.01	15	0.18	0.0602	2,621
CB-2	1.50	16	0.19	0.0315	1,373
Swale-1	1.25	12	0.16	0.0214	932
Total	5.76	15	0.18	0.1131	4,927

GRV = ((D)(A)(I))/12

Where:

GRV = Groundwater Recharge Volume

D = Depth of Runoff to be Recharged (Table 7.4 of Stormwater Quality Manual)

A = Site Area (acres)

I = Percent Impervious Cover (decimal)

Table	74

Table 7.4						
NRCS Hydrologic Soil Group	Average Annual Recharge	Groundwater Recharge Depth (D)				
Α	18 in/year	0.4 inch				
В	12 in/year	0.25 inch				
С	6 in/year	0.1 inch				
D	3 in/year	0 inch				

Watershed Number	Watershed Area (acres)	Percent Impervious	Groundwater Recharge Depth (D)	Groundwater Recharge Volume (ac.ft)	Groundwater Recharge Volume (CF)	
					-	
1	5.76	0.15	0.25	0.0175	762	

For Hydrologic Soil Group, see Web Soil Survey

The majority of development occurs over soil with hydrologic group B

For Design Use WQV since it is higher than GRV

Volume of Proposed Water Quality Basin #1

Contour Elevation	Elevation Difference (ft)	Area (sq. ft.)	Volume (CF)	Cumulative Volume (CF)
736.0	-	1,354		
737.6	1.6	3,257	3,689	3,689

Volume of Proposed Water QualityBasin #2

Contour Elevation	Elevation Difference (ft)	Area (sq. ff.)	Volume (CF)	Cumulative Volume (CF)
735.0	-	857		
736.0	1.0	2,828	1,843	1,843

Total Storage Volume Available Total → 5,531 > 4927 CF - OK